Created
November 5, 2018 18:46
-
-
Save Kaixhin/9c90221aae216f59ca2594ea000b0afe to your computer and use it in GitHub Desktop.
Associative Compression Networks
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import torch | |
from torch import nn, optim | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from torchvision import datasets, transforms | |
from torchvision.utils import save_image | |
class Encoder(nn.Module): | |
def __init__(self, latent_size): | |
super().__init__() | |
self.conv1 = nn.Conv2d(1, 8, 5, stride=2, padding=2, bias=False) | |
self.conv2 = nn.Conv2d(8, 17, 3, stride=2, padding=2, bias=False) | |
self.conv3 = nn.Conv2d(16, 32, 3, stride=2, padding=1, bias=False) | |
self.fc_c = nn.Linear(32 * 4 * 4, latent_size) | |
def forward(self, x): | |
x = F.relu(self.conv1(x)) | |
x = F.relu(self.conv2(x)) | |
x = F.relu(self.conv3(x)) | |
x = x.view(-1, 32 * 4 * 4) | |
c = self.fc_c(x) # Actually only producing deterministic encoding | |
return c | |
class Prior(nn.Module): | |
def __init__(self, latent_size): | |
super().__init__() | |
self.fc1 = nn.Linear(latent_size, 256) | |
self.fc_mu = nn.Linear(256, latent_size) | |
self.fc_log_var = nn.Linear(256, latent_size) | |
def forward(self, c): | |
x = torch.tanh(self.fc1(c)) | |
mu, log_var = self.fc_mu(x), None | |
z = mu | |
if self.training: | |
log_var = self.fc_log_var(x) | |
z = z + log_var.mul(0.5).exp() * torch.randn_like(z) | |
return z, mu, log_var | |
class Decoder(nn.Module): | |
def __init__(self, latent_size): | |
super().__init__() | |
self.fc_dec = nn.Linear(latent_size, 32 * 4 * 4) | |
self.conv4 = nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1, output_padding=1, bias=False) | |
self.conv5 = nn.ConvTranspose2d(16, 8, 3, stride=2, padding=2, output_padding=1, bias=False) | |
self.conv6 = nn.ConvTranspose2d(8, 1, 5, stride=2, padding=2, output_padding=1) | |
def forward(self, z): | |
x = self.fc_dec(z) | |
x = x.view(-1, 32, 4, 4) | |
x = F.relu(self.conv4(x)) | |
x = F.relu(self.conv5(x)) | |
return self.conv6(x) | |
def kl_normal(mu_0, log_var_0, mu_1, log_var_1): | |
kl = (2 * (log_var_1 - log_var_0)).exp() + ((mu_1 - mu_0) / log_var_0.exp()) ** 2 - 2 * (log_var_1 - log_var_0) - 1 | |
return 0.5 * kl.sum(1).mean() | |
latent_size = 16 # Latent/code size | |
k = 5 # Number of nearest neighbours | |
batch_size = 128 | |
epochs = 10 | |
train_data = datasets.MNIST(os.path.join(os.path.expanduser('~'), '.torch', 'datasets', 'mnist'), transform=transforms.ToTensor(), download=True) | |
train_dataloader = DataLoader(train_data, batch_size=batch_size, drop_last=True, num_workers=4) # Make easier to track indices | |
C = torch.randn(len(train_data), latent_size).cuda() # Associative dataset (codebook) | |
log_ones = torch.zeros(batch_size, latent_size).cuda() # Fixed encoding log variance | |
encoder = Encoder(latent_size).cuda() | |
prior = Prior(latent_size).cuda() | |
decoder = Decoder(latent_size).cuda() | |
optimiser = optim.Adam(list(encoder.parameters()) + list(prior.parameters()) + list(decoder.parameters()), lr=5e-3) | |
for epoch in range(epochs): | |
indices = torch.arange(batch_size) | |
for i, (x, _) in enumerate(train_dataloader): | |
x = x.cuda() | |
c = encoder(x) # Get code | |
with torch.no_grad(): | |
C[indices, :] = c # Update C with new codes | |
l2_dists, l2_inds = (C.expand(batch_size, C.size(0), C.size(1)) - c.unsqueeze(1)).pow(2).sum(2).sort(dim=1, descending=False) | |
knn_inds = l2_inds[:, 1:k + 1] # Drop element itself | |
# TODO: Make sure that neighbouring codes are only used per pass through dataset | |
c_hat = C[knn_inds[range(batch_size), torch.randint(k, (batch_size,)).long()]] # Pick c_hat randomly from KNN(x) | |
z, mu, log_var = prior(c_hat) # Sample from prior network | |
x_hat = decoder(z) # Decode sample | |
recon_loss = F.binary_cross_entropy_with_logits(x_hat, x, reduction='sum') # Reconstruction loss | |
kld = kl_normal(c, log_ones, mu, log_var) # KL divergence between variational posterior and conditional prior | |
loss = (recon_loss + kld) / batch_size | |
optimiser.zero_grad() | |
loss.backward() | |
optimiser.step() | |
indices += batch_size | |
if i % 100 == 0: | |
print(recon_loss.item(), kld.item()) | |
# Reconstruction | |
save_image(torch.sigmoid(x_hat[:64].cpu()), 'x_hat_%d.png' % epoch) | |
# Daydream | |
with torch.no_grad(): | |
xs = [torch.sigmoid(x_hat[:8])] | |
for _ in range(7): | |
c = encoder(xs[-1]) | |
z, _, _ = prior(c) | |
x_hat = torch.sigmoid(decoder(z)) | |
xs.append(x_hat) | |
save_image(torch.cat(xs, 0).cpu(), 'z_%d.png' % epoch) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment