Created
March 14, 2019 15:39
-
-
Save Kazark/255f3a7f2d32917603682bd9ffbe8632 to your computer and use it in GitHub Desktop.
Identity functor and monad laws
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Id where | |
open import Relation.Binary.PropositionalEquality.Core | |
open import Function | |
data Id : Set → Set where | |
Itself : ∀{A} → A → Id A | |
fmap : ∀{A B} → (A → B) → Id A → Id B | |
fmap f (Itself x) = Itself (f x) | |
pure : ∀{A} → A -> Id A | |
pure x = Itself x | |
infixr 5 _>>=_ | |
_>>=_ : ∀{A B} → Id A → (A -> Id B) -> Id B | |
Itself x >>= f = f x | |
functorIdentity : ∀{A} → (x : Id A) → fmap id x ≡ x | |
functorIdentity (Itself x) = refl | |
functorComposition : ∀{A B C} | |
→ (x : Id A) → (g : A → B) → (f : B → C) | |
→ fmap (f ∘ g) x ≡ fmap f (fmap g x) | |
functorComposition (Itself x) g f = refl | |
pureBind : ∀{A B} → (x : A) → (f : A → Id B) → pure x >>= f ≡ f x | |
pureBind x f = refl | |
bindPure : ∀{A} → (x : Id A) → x >>= pure ≡ x | |
bindPure (Itself x) = refl | |
bindAssoc : ∀{A B C} → (m : Id A) → (f : A → Id B) → (g : B → Id C) | |
→ m >>= (λ x → f x >>= g) ≡ (m >>= f) >>= g | |
bindAssoc (Itself x) f g = refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment