Created
September 11, 2020 17:23
-
-
Save Kazark/2b85f2bffe744e589bc8011f27343851 to your computer and use it in GitHub Desktop.
Cartesian Coordinate Pairs in the 2-Space of Naturals is a Partial Order, but not a Total Order
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module Point where | |
import Relation.Binary.PropositionalEquality as Eq | |
open Eq using (_≡_; refl; cong; trans) | |
open import Relation.Nullary using (¬_) | |
open import Data.Nat using (ℕ; zero; suc; _+_) | |
open import Function using (_∘_) | |
open import Data.Nat.Properties using (+-comm; +-identityʳ) | |
open import Data.Product using (∃-syntax; _,_; _×_; -,_) | |
data _ℕ≤_ : ℕ → ℕ → Set where | |
z≤n : ∀ {n : ℕ} → zero ℕ≤ n | |
s≤s : ∀ {m n : ℕ} → m ℕ≤ n → suc m ℕ≤ suc n | |
ℕ≤-refl : ∀ {n : ℕ} → n ℕ≤ n | |
ℕ≤-refl {zero} = z≤n | |
ℕ≤-refl {suc _} = s≤s ℕ≤-refl | |
ℕ≤-trans : ∀ {m n p : ℕ} → m ℕ≤ n → n ℕ≤ p → m ℕ≤ p | |
ℕ≤-trans z≤n _ = z≤n | |
ℕ≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (ℕ≤-trans m≤n n≤p) | |
ℕ≤-antisym : ∀ {m n : ℕ} → m ℕ≤ n → n ℕ≤ m → m ≡ n | |
ℕ≤-antisym z≤n z≤n = refl | |
ℕ≤-antisym (s≤s m≤n) (s≤s n≤m) = cong suc (ℕ≤-antisym m≤n n≤m) | |
¬sucn≤n : ∀{n : ℕ} → ¬ suc n ℕ≤ n | |
¬sucn≤n {zero} () | |
¬sucn≤n {suc n} (s≤s prf) = ¬sucn≤n {n} prf | |
record ℕ² : Set where | |
constructor [_,_] | |
field x y : ℕ | |
[,]-monoʳ-≡ : ∀ {n p q : ℕ} → p ≡ q → [ n , p ] ≡ [ n , q ] | |
[,]-monoʳ-≡ {n} = cong [ n ,_] | |
[,]-monoˡ-≡ : ∀ {n p q : ℕ} → p ≡ q → [ p , n ] ≡ [ q , n ] | |
[,]-monoˡ-≡ {n} = cong [_, n ] | |
[,]-mono-≡ : ∀{m n p q : ℕ} → m ≡ n → p ≡ q → [ m , p ] ≡ [ n , q ] | |
[,]-mono-≡ m≡n p≡q = trans ([,]-monoʳ-≡ p≡q) ([,]-monoˡ-≡ m≡n) | |
origin : ℕ² | |
origin = [ zero , zero ] | |
sucx : ℕ² → ℕ² | |
sucx [ x , y ] = [ suc x , y ] | |
sucy : ℕ² → ℕ² | |
sucy [ x , y ] = [ x , suc y ] | |
sucxy : ℕ² → ℕ² | |
sucxy = sucx ∘ sucy | |
data _ℕ²≤_ : ℕ² → ℕ² → Set where | |
p≤q : ∀ {p₁ p₂ q₁ q₂ : ℕ} → p₁ ℕ≤ q₁ → p₂ ℕ≤ q₂ → [ p₁ , p₂ ] ℕ²≤ [ q₁ , q₂ ] | |
ℕ²≤-refl : ∀ {p : ℕ²} → p ℕ²≤ p | |
ℕ²≤-refl = p≤q ℕ≤-refl ℕ≤-refl | |
ℕ²≤-trans : ∀ {p q r : ℕ²} → p ℕ²≤ q → q ℕ²≤ r → p ℕ²≤ r | |
ℕ²≤-trans (p≤q p₁≤q₁ p₂≤q₂) (p≤q q₁≤r₁ q₂≤r₂) = | |
p≤q (ℕ≤-trans p₁≤q₁ q₁≤r₁) (ℕ≤-trans p₂≤q₂ q₂≤r₂) | |
ℕ²≤-antisym : ∀ {p q : ℕ²} → p ℕ²≤ q → q ℕ²≤ p → p ≡ q | |
ℕ²≤-antisym {[ p₁ , p₂ ]} {[ q₁ , q₂ ]} (p≤q p₁≤q₁ p₂≤q₂) (p≤q q₁≤p₁ q₂≤p₂) = | |
[,]-mono-≡ (ℕ≤-antisym p₁≤q₁ q₁≤p₁) (ℕ≤-antisym p₂≤q₂ q₂≤p₂) | |
axes-diverge¹ : (p : ℕ²) → ¬ sucx p ℕ²≤ sucy p | |
axes-diverge¹ [ zero , _ ] (p≤q () _) | |
axes-diverge¹ [ suc _ , _ ] (p≤q sucn≤n _) = ¬sucn≤n sucn≤n | |
axes-diverge² : (p : ℕ²) → ¬ sucy p ℕ²≤ sucx p | |
axes-diverge² [ _ , zero ] (p≤q _ ()) | |
axes-diverge² [ _ , suc _ ] (p≤q _ sucn≤n) = ¬sucn≤n sucn≤n | |
ℕ²≤-partial : ∃[ p ](∃[ q ](¬ p ℕ²≤ q × ¬ q ℕ²≤ p)) | |
ℕ²≤-partial = -, -, axes-diverge² origin , axes-diverge¹ origin |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment