Last active
May 2, 2017 07:10
-
-
Save Keiku/28af36ecbd89ee3fd05c1b19ef9d156f to your computer and use it in GitHub Desktop.
Split K-fold validation dataset.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import string | |
import numpy as np | |
import pandas as pd | |
from sklearn.model_selection import KFold, StratifiedKFold | |
X_train = np.random.random((10, 2)) | |
y_train = np.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) | |
column = "pred" | |
n_fold = 5 | |
p_train = pd.DataFrame(index=range(len(X_train)), columns=[column]) | |
kf = KFold(n_fold, random_state=123) | |
for tr, te in kf.split(X_train): | |
print(tr, te) | |
X_tra, y_tra, X_val, y_val = X_train[tr], y_train[tr], X_train[te], y_train[te] | |
p_val = y_val | |
p_val_df = pd.DataFrame(p_val, index=te, columns=[column]) | |
p_train.iloc[te] = p_val_df | |
print(p_train) | |
# [2 3 4 5 6 7 8 9] [0 1] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 NaN | |
# 3 NaN | |
# 4 NaN | |
# 5 NaN | |
# 6 NaN | |
# 7 NaN | |
# 8 NaN | |
# 9 NaN | |
# [0 1 4 5 6 7 8 9] [2 3] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 1 | |
# 3 1 | |
# 4 NaN | |
# 5 NaN | |
# 6 NaN | |
# 7 NaN | |
# 8 NaN | |
# 9 NaN | |
# [0 1 2 3 6 7 8 9] [4 5] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 1 | |
# 3 1 | |
# 4 1 | |
# 5 0 | |
# 6 NaN | |
# 7 NaN | |
# 8 NaN | |
# 9 NaN | |
# [0 1 2 3 4 5 8 9] [6 7] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 1 | |
# 3 1 | |
# 4 1 | |
# 5 0 | |
# 6 0 | |
# 7 0 | |
# 8 NaN | |
# 9 NaN | |
# [0 1 2 3 4 5 6 7] [8 9] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 1 | |
# 3 1 | |
# 4 1 | |
# 5 0 | |
# 6 0 | |
# 7 0 | |
# 8 0 | |
# 9 0 | |
X_train = np.random.random((10, 2)) | |
y_train = np.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) | |
column = "pred" | |
n_fold = 5 | |
p_train = pd.DataFrame(index=range(len(X_train)), columns=[column]) | |
skf = StratifiedKFold(n_fold, random_state=123) | |
for tr, te in skf.split(X_train, y_train): | |
print(tr, te) | |
X_tra, y_tra, X_val, y_val = X_train[tr], y_train[tr], X_train[te], y_train[te] | |
p_val = y_val | |
p_val_df = pd.DataFrame(p_val, index=te, columns=[column]) | |
p_train.iloc[te] = p_val_df | |
print(p_train) | |
# [1 2 3 4 6 7 8 9] [0 5] | |
# pred | |
# 0 1 | |
# 1 NaN | |
# 2 NaN | |
# 3 NaN | |
# 4 NaN | |
# 5 0 | |
# 6 NaN | |
# 7 NaN | |
# 8 NaN | |
# 9 NaN | |
# [0 2 3 4 5 7 8 9] [1 6] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 NaN | |
# 3 NaN | |
# 4 NaN | |
# 5 0 | |
# 6 0 | |
# 7 NaN | |
# 8 NaN | |
# 9 NaN | |
# [0 1 3 4 5 6 8 9] [2 7] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 1 | |
# 3 NaN | |
# 4 NaN | |
# 5 0 | |
# 6 0 | |
# 7 0 | |
# 8 NaN | |
# 9 NaN | |
# [0 1 2 4 5 6 7 9] [3 8] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 1 | |
# 3 1 | |
# 4 NaN | |
# 5 0 | |
# 6 0 | |
# 7 0 | |
# 8 0 | |
# 9 NaN | |
# [0 1 2 3 5 6 7 8] [4 9] | |
# pred | |
# 0 1 | |
# 1 1 | |
# 2 1 | |
# 3 1 | |
# 4 1 | |
# 5 0 | |
# 6 0 | |
# 7 0 | |
# 8 0 | |
# 9 0 | |
X_train = np.random.random((10, 2)) | |
y_train = np.array([1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) | |
column = "pred" | |
n_fold = 5 | |
p_train = pd.DataFrame({"ID": list(string.ascii_uppercase)[0:10]}, | |
index=range(len(X_train)), | |
columns=["ID", column]) | |
kf = KFold(n_fold, random_state=123) | |
for tr, te in kf.split(X_train): | |
print(tr, te) | |
X_tra, y_tra, X_val, y_val = X_train[tr], y_train[tr], X_train[te], y_train[te] | |
p_val = y_val | |
p_val_df = pd.DataFrame(p_val, index=te, columns=[column]) | |
p_train.loc[te, [column]] = p_val_df | |
print(p_train) | |
# [2 3 4 5 6 7 8 9] [0 1] | |
# ID pred | |
# 0 A 1 | |
# 1 B 1 | |
# 2 C NaN | |
# 3 D NaN | |
# 4 E NaN | |
# 5 F NaN | |
# 6 G NaN | |
# 7 H NaN | |
# 8 I NaN | |
# 9 J NaN | |
# [0 1 4 5 6 7 8 9] [2 3] | |
# ID pred | |
# 0 A 1 | |
# 1 B 1 | |
# 2 C 1 | |
# 3 D 1 | |
# 4 E NaN | |
# 5 F NaN | |
# 6 G NaN | |
# 7 H NaN | |
# 8 I NaN | |
# 9 J NaN | |
# [0 1 2 3 6 7 8 9] [4 5] | |
# ID pred | |
# 0 A 1 | |
# 1 B 1 | |
# 2 C 1 | |
# 3 D 1 | |
# 4 E 1 | |
# 5 F 0 | |
# 6 G NaN | |
# 7 H NaN | |
# 8 I NaN | |
# 9 J NaN | |
# [0 1 2 3 4 5 8 9] [6 7] | |
# ID pred | |
# 0 A 1 | |
# 1 B 1 | |
# 2 C 1 | |
# 3 D 1 | |
# 4 E 1 | |
# 5 F 0 | |
# 6 G 0 | |
# 7 H 0 | |
# 8 I NaN | |
# 9 J NaN | |
# [0 1 2 3 4 5 6 7] [8 9] | |
# ID pred | |
# 0 A 1 | |
# 1 B 1 | |
# 2 C 1 | |
# 3 D 1 | |
# 4 E 1 | |
# 5 F 0 | |
# 6 G 0 | |
# 7 H 0 | |
# 8 I 0 | |
# 9 J 0 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment