Last active
October 5, 2022 01:52
-
-
Save Keiku/b6dca88b9bbe7b55701e43f7f5ee19a6 to your computer and use it in GitHub Desktop.
Plot ROC curve.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
from sklearn.metrics import roc_curve, auc | |
import seaborn as sns | |
sns.set('talk', 'whitegrid', 'dark', font_scale=1.5, font='Ricty', | |
rc={"lines.linewidth": 2, 'grid.linestyle': '--'}) | |
fpr, tpr, _ = roc_curve([1, 0, 1, 0, 1, 0, 0], [0.9, 0.8, 0.7, 0.7, 0.6, 0.5, 0.4]) | |
roc_auc = auc(fpr, tpr) | |
lw = 2 | |
plt.figure() | |
plt.plot(fpr, tpr, color='darkorange', | |
lw=lw, label='ROC curve (AUC = %0.2f)' % roc_auc) | |
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') | |
plt.xlim([0.0, 1.0]) | |
plt.ylim([0.0, 1.05]) | |
plt.xlabel('偽陽性率(False Positive Rate)') | |
plt.ylabel('真陽性率(True Positive Rate)') | |
plt.title('ROC曲線(Receiver Operating Characteristic curve)') | |
plt.legend(loc="lower right") | |
plt.show() | |
plt.savefig('roc_auc.png') | |
plt.close() |
Would anyone like to see a seaborn-only alternative?
yes, that would be great!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Would anyone like to see a seaborn-only alternative?