-
-
Save KelSolaar/6e317ac1da6a42776bee9deca3de187c to your computer and use it in GitHub Desktop.
Very simple ray tracing engine in (almost) pure Python. Depends on NumPy and Matplotlib. Diffuse and specular lighting, simple shadows, reflections, no refraction. Purely sequential algorithm, slow execution.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
w = 400 | |
h = 300 | |
def normalize(x): | |
x /= np.linalg.norm(x) | |
return x | |
def intersect_plane(O, D, P, N): | |
# Return the distance from O to the intersection of the ray (O, D) with the | |
# plane (P, N), or +inf if there is no intersection. | |
# O and P are 3D points, D and N (normal) are normalized vectors. | |
denom = np.dot(D, N) | |
if np.abs(denom) < 1e-6: | |
return np.inf | |
d = np.dot(P - O, N) / denom | |
if d < 0: | |
return np.inf | |
return d | |
def intersect_sphere(O, D, S, R): | |
# Return the distance from O to the intersection of the ray (O, D) with the | |
# sphere (S, R), or +inf if there is no intersection. | |
# O and S are 3D points, D (direction) is a normalized vector, R is a scalar. | |
a = np.dot(D, D) | |
OS = O - S | |
b = 2 * np.dot(D, OS) | |
c = np.dot(OS, OS) - R * R | |
disc = b * b - 4 * a * c | |
if disc > 0: | |
distSqrt = np.sqrt(disc) | |
q = (-b - distSqrt) / 2.0 if b < 0 else (-b + distSqrt) / 2.0 | |
t0 = q / a | |
t1 = c / q | |
t0, t1 = min(t0, t1), max(t0, t1) | |
if t1 >= 0: | |
return t1 if t0 < 0 else t0 | |
return np.inf | |
def intersect(O, D, obj): | |
if obj['type'] == 'plane': | |
return intersect_plane(O, D, obj['position'], obj['normal']) | |
elif obj['type'] == 'sphere': | |
return intersect_sphere(O, D, obj['position'], obj['radius']) | |
def get_normal(obj, M): | |
# Find normal. | |
if obj['type'] == 'sphere': | |
N = normalize(M - obj['position']) | |
elif obj['type'] == 'plane': | |
N = obj['normal'] | |
return N | |
def get_color(obj, M): | |
color = obj['color'] | |
if not hasattr(color, '__len__'): | |
color = color(M) | |
return color | |
def trace_ray(rayO, rayD): | |
# Find first point of intersection with the scene. | |
t = np.inf | |
for i, obj in enumerate(scene): | |
t_obj = intersect(rayO, rayD, obj) | |
if t_obj < t: | |
t, obj_idx = t_obj, i | |
# Return None if the ray does not intersect any object. | |
if t == np.inf: | |
return | |
# Find the object. | |
obj = scene[obj_idx] | |
# Find the point of intersection on the object. | |
M = rayO + rayD * t | |
# Find properties of the object. | |
N = get_normal(obj, M) | |
color = get_color(obj, M) | |
toL = normalize(L - M) | |
toO = normalize(O - M) | |
# Shadow: find if the point is shadowed or not. | |
l = [intersect(M + N * .0001, toL, obj_sh) | |
for k, obj_sh in enumerate(scene) if k != obj_idx] | |
if l and min(l) < np.inf: | |
return | |
# Start computing the color. | |
col_ray = ambient | |
# Lambert shading (diffuse). | |
col_ray += obj.get('diffuse_c', diffuse_c) * max(np.dot(N, toL), 0) * color | |
# Blinn-Phong shading (specular). | |
col_ray += obj.get('specular_c', specular_c) * max(np.dot(N, normalize(toL + toO)), 0) ** specular_k * color_light | |
return obj, M, N, col_ray | |
def add_sphere(position, radius, color): | |
return dict(type='sphere', position=np.array(position), | |
radius=np.array(radius), color=np.array(color), reflection=.5) | |
def add_plane(position, normal): | |
return dict(type='plane', position=np.array(position), | |
normal=np.array(normal), | |
color=lambda M: (color_plane0 | |
if (int(M[0] * 2) % 2) == (int(M[2] * 2) % 2) else color_plane1), | |
diffuse_c=.75, specular_c=.5, reflection=.25) | |
# List of objects. | |
color_plane0 = 1. * np.ones(3) | |
color_plane1 = 0. * np.ones(3) | |
scene = [add_sphere([.75, .1, 1.], .6, [0., 0., 1.]), | |
add_sphere([-.75, .1, 2.25], .6, [.5, .223, .5]), | |
add_sphere([-2.75, .1, 3.5], .6, [1., .572, .184]), | |
add_plane([0., -.5, 0.], [0., 1., 0.]), | |
] | |
# Light position and color. | |
L = np.array([5., 5., -10.]) | |
color_light = np.ones(3) | |
# Default light and material parameters. | |
ambient = .05 | |
diffuse_c = 1. | |
specular_c = 1. | |
specular_k = 50 | |
depth_max = 5 # Maximum number of light reflections. | |
col = np.zeros(3) # Current color. | |
O = np.array([0., 0.35, -1.]) # Camera. | |
Q = np.array([0., 0., 0.]) # Camera pointing to. | |
img = np.zeros((h, w, 3)) | |
r = float(w) / h | |
# Screen coordinates: x0, y0, x1, y1. | |
S = (-1., -1. / r + .25, 1., 1. / r + .25) | |
# Loop through all pixels. | |
for i, x in enumerate(np.linspace(S[0], S[2], w)): | |
if i % 10 == 0: | |
print i / float(w) * 100, "%" | |
for j, y in enumerate(np.linspace(S[1], S[3], h)): | |
col[:] = 0 | |
Q[:2] = (x, y) | |
D = normalize(Q - O) | |
depth = 0 | |
rayO, rayD = O, D | |
reflection = 1. | |
# Loop through initial and secondary rays. | |
while depth < depth_max: | |
traced = trace_ray(rayO, rayD) | |
if not traced: | |
break | |
obj, M, N, col_ray = traced | |
# Reflection: create a new ray. | |
rayO, rayD = M + N * .0001, normalize(rayD - 2 * np.dot(rayD, N) * N) | |
depth += 1 | |
col += reflection * col_ray | |
reflection *= obj.get('reflection', 1.) | |
img[h - j - 1, i, :] = np.clip(col, 0, 1) | |
plt.imsave('fig.png', img) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment