Created
April 29, 2019 21:16
-
-
Save KellenSunderland/686522830475dfc7073b5d7a97e89d24 to your computer and use it in GitHub Desktop.
MXNet Benchmarking Script
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import mxnet as mx | |
import numpy as np | |
import importlib | |
from collections import namedtuple | |
import time | |
def runMx(ctx,mod,data,num_batches,runType): | |
print('%s MXNet' % (runType)) | |
Batch = namedtuple('Batch', ['data']) | |
t = 0 | |
for b in range(0,num_batches): | |
dataMx = mx.nd.array(data,ctx) | |
toc = time.time() | |
mod.forward(Batch([dataMx])) | |
outputs = mod.get_outputs() | |
for out in outputs: | |
out.wait_to_read() | |
t = t + time.time() - toc | |
return t, out | |
def main(): | |
print('# MxNet: %s %s' % (mx.__file__,mx.__version__)) | |
C = 3 | |
Y = 320 | |
X = 240 | |
batch_size = 16 | |
symbolName = 'symbol_fcnxs' | |
device_id = 0 | |
num_images_dryrun = 128 | |
num_images_run = 1024 | |
num_batches_dryrun = int(num_images_dryrun/batch_size) | |
num_batches_run = int(num_images_run/batch_size) | |
# create dummy batch | |
img = np.zeros((Y, X, C),dtype=np.uint8) | |
img = np.swapaxes(img, 0, 2) | |
img = np.swapaxes(img, 1, 2) | |
data = [] | |
for i in range(0,batch_size): | |
data += [img] | |
data_shapes = (batch_size,C,Y,X) | |
# bind GPU | |
ctx = mx.gpu(device_id) | |
# load symbol | |
print('# load %s' % (symbolName)) | |
net = importlib.import_module(symbolName) | |
sym = net.get_fcn8s_symbol() | |
# get dummy weights | |
executor = sym.simple_bind(ctx, data=data_shapes, grad='null') | |
arg_params = executor.arg_dict | |
aux_params = executor.aux_dict | |
# bind | |
mod = mx.mod.Module(symbol=sym, context=ctx, label_names=[]) | |
executor = mod.bind(for_training=False, inputs_need_grad=False, data_shapes=[('data', data_shapes)]) | |
# set dummy weights | |
mod.set_params(arg_params, aux_params, allow_missing=True) | |
t, out = runMx(ctx,mod,data,num_batches_dryrun,'dry run') | |
t, out = runMx(ctx,mod,data,num_batches_run,'run') | |
print "# inputs: ({} {} {} {})".format(len(data),data[0].shape[0],data[0].shape[1],data[0].shape[2]) | |
print "# outputs: ", out.shape | |
print "# forward time: %1.2f ms/frame, %1.2f ms total; batch_size: %d; symbol: %s" % (t*1000/(batch_size*num_batches_run),t*1000,batch_size,symbolName) | |
return | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment