Created
February 5, 2018 18:12
-
-
Save KentaKudo/c7b2601718888739f969af02e2733f17 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def res_net(shape): | |
from keras.models import Model | |
from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Input, BatchNormalization, Add, Activation, GlobalAveragePooling2D | |
from keras.regularizers import l2 | |
def resblock(filters, kernel_size=(3, 3), increase=False): | |
strides = (2, 2) if increase else (1, 1) | |
def _res_block(x): | |
x_ = Conv2D(filters, kernel_size, | |
strides=strides, | |
padding='same', | |
kernel_regularizer=l2(weight_decay), | |
activation='relu')(x) | |
x_ = BatchNormalization()(x_) | |
x_ = Conv2D(filters, kernel_size, | |
strides=(1, 1), | |
padding='same', | |
kernel_regularizer=l2(weight_decay), | |
activation='relu')(x_) | |
if increase: | |
x = Conv2D(filters, (1, 1), | |
strides=(2, 2), | |
padding='same', | |
kernel_regularizer=l2(weight_decay), | |
activation='relu')(x) | |
x = Add()([x_, x]) | |
x = BatchNormalization()(x) | |
x = Activation('relu')(x) | |
return x | |
return _res_block | |
weight_decay = 1e-4 | |
inputs = Input(shape=shape) | |
# 32 * 32 * 3 | |
x = Conv2D(64, (7, 7), padding='same', kernel_regularizer=l2(weight_decay), activation='relu')(inputs) | |
x = BatchNormalization()(x) | |
x = MaxPooling2D(pool_size=(2, 2))(x) | |
# 16 * 16 * 64 → 16 * 16 * 64 | |
x = resblock(64, increase=True)(x) | |
x = resblock(64)(x) | |
x = resblock(64)(x) | |
x = MaxPooling2D(pool_size=(2, 2))(x) | |
# 8 * 8 * 64 → 8 * 8 * 128 | |
x = resblock(128, increase=True)(x) | |
x = resblock(128)(x) | |
x = resblock(128)(x) | |
x = resblock(128)(x) | |
x = MaxPooling2D(pool_size=(2, 2))(x) | |
# 4 * 4 * 128 → 4 * 4 * 256 | |
x = resblock(256, increase=True)(x) | |
x = resblock(256)(x) | |
x = resblock(256)(x) | |
x = resblock(256)(x) | |
x = resblock(256)(x) | |
x = resblock(256)(x) | |
x = MaxPooling2D(pool_size=(2, 2))(x) | |
# 2 * 2 * 256 → 2 * 2 * 512 | |
x = resblock(512, increase=True)(x) | |
x = resblock(512)(x) | |
x = resblock(512)(x) | |
x = GlobalAveragePooling2D()(x) | |
# 512 → 10 | |
y = Dense(10, activation='softmax')(x) | |
model = Model(inputs=inputs, outputs=y) | |
model.compile( | |
loss='categorical_crossentropy', | |
optimizer='adam', | |
metrics=['accuracy'] | |
) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment