Last active
February 20, 2022 17:23
-
-
Save Konard/54182f05ec54b0621fd539749c44c8db to your computer and use it in GitHub Desktop.
Prime numbers pattern in unary numbers represented as doublets.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
is_prime_array = [False, True, True, True, False] | |
primes = [1, 2, 3, 5] | |
def is_prime(n): | |
if n <= 3: | |
return True | |
if n % 2 == 0 or n % 3 == 0: | |
return False | |
i = 5 | |
while i * i <= n: | |
if n % i == 0: | |
return False | |
i += 2 | |
while not is_prime(i): | |
i += 2 | |
return True | |
def append_prime(n, is_prime): | |
if is_prime: | |
primes.append(n) | |
is_prime_array.append(is_prime) | |
def is_prime_memoized(n): | |
array_len = len(is_prime_array) | |
is_prime = True | |
if array_len > n: | |
return is_prime_array[n] | |
elif array_len == n: | |
i = 1 | |
p = primes[i] | |
while i * i <= n: | |
if n % p == 0: | |
is_prime = False | |
break | |
i += 1 | |
p = primes[i] | |
append_prime(n, is_prime) | |
else: | |
i = array_len | |
while i <= n: | |
is_prime = is_prime_memoized(i) | |
i += 1 | |
return is_prime | |
# for i in range(1, 120): | |
# if is_prime(i): | |
# print(i) | |
# for i in range(1, 120): | |
# if is_prime_memoized(i): | |
# print(i) | |
print(is_prime(99999)) | |
print(is_prime_memoized(99999)) | |
print('done') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
01 = (01: ...) | |
02 = (02: 01 01) prime | |
03 = (03: 02 01) prime | |
04 = (04: 02 02) | |
05 = (05: 04 01) prime | |
06 = (06: 04 02) | |
07 = (07: 04 03) prime | |
08 = (08: 04 04) | |
09 = (09: 08 01) !prime (divisible by 3) (9 = 3*3) | |
10 = (10: 08 02) | |
11 = (11: 08 03) prime | |
12 = (12: 08 04) | |
13 = (13: 08 05) prime | |
14 = (14: 08 06) | |
15 = (15: 08 07) !prime (divisible by 3) | |
16 = (16: 08 08) | |
17 = (17: 16 01) prime | |
18 = (18: 16 02) | |
19 = (19: 16 03) prime | |
20 = (20: 16 04) | |
21 = (21: 16 05) !prime (divisible by 3) | |
22 = (22: 16 06) | |
23 = (23: 16 07) prime | |
24 = (24: 16 08) | |
25 = (25: 16 09) !prime (divisible by 5) (25 = 5*5) | |
26 = (26: 16 10) | |
27 = (27: 16 11) !prime (divisible by 3) | |
28 = (28: 16 12) | |
29 = (29: 16 13) prime | |
30 = (30: 16 14) | |
31 = (31: 16 15) prime | |
32 = (32: 16 16) | |
33 = (33: 32 01) !prime (divisible by 3) | |
34 = (34: 32 02) | |
35 = (35: 32 03) !prime (divisible by 5) | |
36 = (36: 32 04) | |
37 = (37: 32 05) prime | |
38 = (38: 32 06) | |
39 = (39: 32 07) !prime (divisible by 3) | |
40 = (40: 32 08) | |
41 = (41: 32 09) prime | |
42 = (42: 32 10) | |
43 = (43: 32 11) prime | |
44 = (44: 32 12) | |
45 = (45: 32 13) !prime (divisible by 5) | |
46 = (46: 32 14) | |
47 = (47: 32 15) prime | |
48 = (48: 32 16) | |
49 = (49: 32 17) !prime (divisible by 7) (49 = 7*7) | |
50 = (50: 32 18) | |
51 = (51: 32 19) !prime (divisible by 3) | |
52 = (52: 32 20) | |
53 = (53: 32 21) prime | |
54 = (54: 32 22) | |
55 = (55: 32 23) !prime (divisible by 5) | |
56 = (56: 32 24) | |
57 = (57: 32 25) !prime (divisible by 3) | |
58 = (58: 32 26) | |
59 = (59: 32 27) prime | |
60 = (60: 32 28) | |
61 = (61: 32 29) prime | |
62 = (62: 32 30) | |
63 = (63: 32 31) !prime (divisible by 3) | |
64 = (64: 32 32) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment