Last active
January 11, 2021 13:43
-
-
Save KostaMalsev/90fd36dede052f128c8046ce7f83b864 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Recover our saved model with the latest checkpoint: | |
pipeline_config = pipeline_file | |
#Put the last ckpt from training in here, don't use long pathnames: | |
model_dir = '/content/training/ckpt-2' | |
configs = config_util.get_configs_from_pipeline_file(pipeline_config) | |
model_config = configs['model'] | |
detection_model = model_builder.build( | |
model_config=model_config, is_training=False) | |
# Restore last checkpoint | |
ckpt = tf.compat.v2.train.Checkpoint( | |
model=detection_model) | |
#ckpt.restore(os.path.join(model_dir)) | |
ckpt.restore(model_dir) | |
#Function perform detection of the object on image in tensor format: | |
def get_model_detection_function(model): | |
"""Get a tf.function for detection.""" | |
@tf.function | |
def detect_fn(image): | |
"""Detect objects in image.""" | |
image, shapes = model.preprocess(image) | |
prediction_dict = model.predict(image, shapes) | |
detections = model.postprocess(prediction_dict, shapes) | |
return detections, prediction_dict, tf.reshape(shapes, [-1]) | |
return detect_fn | |
#Define function which performs detection: | |
detect_fn = get_model_detection_function(detection_model) | |
#map labels for inference decoding | |
label_map_path = configs['eval_input_config'].label_map_path | |
label_map = label_map_util.load_labelmap(label_map_path) | |
categories = label_map_util.convert_label_map_to_categories( | |
label_map, | |
max_num_classes=label_map_util.get_max_label_map_index(label_map), | |
use_display_name=True) | |
category_index = label_map_util.create_category_index(categories) | |
label_map_dict = label_map_util.get_label_map_dict(label_map, use_display_name=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment