Last active
February 24, 2018 16:21
-
-
Save Kreijstal/9f73f21df5f5669cf95e895c1a2da4c9 to your computer and use it in GitHub Desktop.
Mathematica and fun!
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
(*So sometimes I just want to show something very fast and I want for mathematica to do it for me, so after tryng very hard I came up with this*) | |
(*Previews and evalueates an expression*) | |
preview[x_] := | |
TraditionalForm[ | |
Row[{TraditionalForm[HoldForm[x]], "=", | |
x}]]; SetAttributes[preview, HoldFirst] | |
a = {6, 3, 0}; | |
b = {9, 6, 0}; | |
c = {9, 3, 3}; | |
d = {6, 6, 3}; | |
points = {{"a", a}, {"b", b}, {"c", c}, {"d", d}}; | |
Print[preview[a]]; Print[preview[b]]; | |
Print[preview[c]]; Print[preview[d]]; | |
Print[Show[ | |
Graphics3D[{Red, PointSize[0.06], Point[Map[#[[2]] &, points]]}], | |
Graphics3D[{Gray, | |
Text[Style[#[[1]], Bold, FontSize -> 18], 1 #[[2]]] & /@ points}], | |
Graphics3D@Line[{{a, b}, {b, c}, {c, d}, {d, a}, {d, b}, {a, c}}], | |
Boxed -> False]] | |
Print["Versuch der schewerpunkt ABC zu finden"] | |
Print[Row[{preview[e = (a + b)/2], | |
" Das ist Mittelpunkt von AB, Ich nenne es punkt e"}]]; | |
points = {{"a", a}, {"b", b}, {"c", c}, {"d", d}, {"e", e}}; Print[ | |
Show[Graphics3D[{Red, PointSize[0.06], | |
Point[Map[#[[2]] &, points]]}], | |
Graphics3D[{Gray, | |
Text[Style[#[[1]], Bold, FontSize -> 18], 1 #[[2]]] & /@ points}], | |
Graphics3D@Line[{{a, b}, {b, c}, {c, d}, {d, a}, {d, b}, {a, c}}], | |
Boxed -> False]] | |
Print[Row[{preview[e + \[Lambda] (c - e)], " Das ist Gerade EC"}]] | |
Print[Show[ | |
Graphics3D[{Red, PointSize[0.06], Point[Map[#[[2]] &, points]]}], | |
Graphics3D[{Gray, | |
Text[Style[#[[1]], Bold, FontSize -> 18], 1 #[[2]]] & /@ points}], | |
Graphics3D@ | |
Line[{{a, b}, {b, c}, {c, d}, {d, a}, {d, b}, {a, c}, {e, c}}], | |
Boxed -> False]] | |
Print[Row[{preview[S1 = (c - e)*1/3 + e], | |
" Das ist der schwerpunkt von ABC, weil \[Lambda]=1/3 von EC der \ | |
Schwerpunkt sein musst, ich nenne es S1"}]] | |
points = {{"a", a}, {"b", b}, {"c", c}, {"d", d}, {"e", e}, {"S1", | |
S1}}; | |
Print[Show[ | |
Graphics3D[{Red, PointSize[0.06], Point[Map[#[[2]] &, points]]}], | |
Graphics3D[{Gray, | |
Text[Style[#[[1]], Bold, FontSize -> 18], 1 #[[2]]] & /@ points}], | |
Graphics3D@ | |
Line[{{a, b}, {b, c}, {c, d}, {d, a}, {d, b}, {a, c}, {e, c}}], | |
Boxed -> False]] | |
Print["Versuch der schewerpunkt BCD zu finden"] | |
Print[Row[{preview[f = (b + c)/2], | |
" Das ist Mittelpunkt von BC, Ich nenne es punkt f"}]]; | |
Print[Row[{preview[f + \[Lambda] (d - f)], " Das ist Gerade FD"}]] | |
Print[Row[{preview[S2 = (d - f)*1/3 + f], | |
" Das ist der schwerpunkt von BCD, weil \[Lambda]=1/3 von FD der \ | |
Schwerpunkt sein musst, ich nenne es S2"}]] | |
points = {{"a", a}, {"b", b}, {"c", c}, {"d", d}, {"S1", S1}, {"S2", | |
S2}, {"e", e}, {"f", f}}; | |
Print[Show[ | |
Graphics3D[{Red, PointSize[0.06], Point[Map[#[[2]] &, points]]}], | |
Graphics3D[{Gray, | |
Text[Style[#[[1]], Bold, FontSize -> 18], 1 #[[2]]] & /@ points}], | |
Graphics3D@ | |
Line[{{a, b}, {b, c}, {c, d}, {d, a}, {d, b}, {a, c}, {e, c}, {f, | |
d}}], Boxed -> False]] | |
Print[Row[{TraditionalForm[ | |
HoldForm[S1 + \[Lambda] (d - S1) == S2 + \[Lambda] (a - S2)]], | |
"Der Schnittpunkt zwischen S1d und S2a ist der Schwerpunkt des \ | |
Tetraeder"}]] | |
Print["Schwerpunkt ist {7.5,4.5,1.5} weil \[Lambda]=0.25, ich nenne \ | |
es p"] | |
p = {7.5, 4.5, 1.5} | |
points = {{"a", a}, {"b", b}, {"c", c}, {"d", d}, {"S1", S1}, {"S2", | |
S2}, {"p", p}}; | |
Print[Show[ | |
Graphics3D[{Red, PointSize[0.06], Point[Map[#[[2]] &, points]]}], | |
Graphics3D[{Gray, | |
Text[Style[#[[1]], Bold, FontSize -> 18], 1 #[[2]]] & /@ points}], | |
Graphics3D@ | |
Line[{{a, b}, {b, c}, {c, d}, {d, a}, {d, b}, {a, c}, {S1, d}, {S2, | |
a}}], Boxed -> False]] | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment