Created
May 24, 2020 03:45
-
-
Save Kriyszig/c898f94a28d72f363167c3914670c6bb to your computer and use it in GitHub Desktop.
Implementation of Dijksra's Algorithm and a modified Dijkstra's Algorithm with Seidel's Heuristics to bound Dijkstra's computation to a localized neighborhood
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
class Graph: | |
def __init__(self, n): | |
self.n = n | |
self.graph = [[0 for j in range(n)] for i in range(n)] | |
def insertEdge(self, u, v, w): | |
self.graph[u - 1][v - 1] = w | |
if(w > 50): | |
self.graph[v - 1][u - 1] = 1 | |
else: | |
self.graph[v - 1][u - 1] = abs(50 - w) | |
def printDist(self, dist): | |
print("vertex", "\t", "Distance") | |
for i in range(self.n): | |
print(i, "\t", dist[i]) | |
def getMinNode(self, dist, computed): | |
minval = sys.maxsize | |
node = -1 | |
compute = 0 | |
for i in range(self.n): | |
if(not computed[i] and dist[i] < minval): | |
compute += 1 | |
minval = dist[i] | |
node = i | |
return [node, compute] | |
def dijkstra(self, src): | |
compute = 0 | |
dist = [sys.maxsize for i in range(self.n)] | |
dist[src] = 0 | |
computed = [False for i in range(self.n)] | |
frm = [-1 for i in range(self.n)] | |
for _ in range(self.n): | |
[u, cmp] = self.getMinNode(dist, computed) | |
compute += cmp | |
computed[u] = True | |
compute += 1 | |
for k in range(self.n): | |
if(not computed[k] and self.graph[u][k] > 0 and (dist[u] + self.graph[u][k]) < dist[k]): | |
compute += 1 | |
dist[k] = dist[u] + self.graph[u][k] | |
frm[k] = u | |
if(dist[3] < 500): | |
print("Distance: ", dist[3]) | |
print("Compute: ", compute) | |
return | |
self.printDist(dist) | |
g = Graph(30) | |
g.insertEdge(1, 2, 100) | |
g.insertEdge(1, 3, 200) | |
g.insertEdge(2, 4, 140) | |
g.insertEdge(3, 4, 70) | |
g.insertEdge(1, 5, 1) | |
g.insertEdge(5, 6, 2) | |
g.insertEdge(5, 7, 2) | |
g.insertEdge(5, 8, 1) | |
g.insertEdge(8, 9, 2) | |
g.insertEdge(8, 10, 2) | |
g.insertEdge(8, 11, 1) | |
g.insertEdge(11, 12, 2) | |
g.insertEdge(11, 13, 2) | |
g.insertEdge(11, 14, 1) | |
g.insertEdge(14, 15, 2) | |
g.insertEdge(14, 16, 2) | |
g.insertEdge(14, 17, 1) | |
g.insertEdge(17, 18, 2) | |
g.insertEdge(17, 19, 2) | |
g.insertEdge(17, 20, 1) | |
g.insertEdge(20, 21, 2) | |
g.insertEdge(20, 22, 2) | |
g.insertEdge(20, 23, 1) | |
g.insertEdge(23, 24, 2) | |
g.insertEdge(23, 25, 2) | |
g.insertEdge(23, 26, 1) | |
g.insertEdge(26, 27, 2) | |
g.insertEdge(26, 28, 2) | |
g.insertEdge(26, 29, 1) | |
g.insertEdge(29, 30, 1) | |
for i in range(100000): | |
g.dijkstra(0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from pprint import pprint | |
def matmul(a, b): | |
n = len(a) | |
result = [[0 for j in range(n)] for i in range(n)] | |
for i in range(n): | |
for j in range(n): | |
for k in range(n): | |
result[i][j] += a[i][k] * b[k][j] | |
return result | |
def computeAdjacency(graph): | |
return [[1 if graph[i][j] != 0 else 0 for j in range(len(graph))] for i in range(len(graph))] | |
def seidel(a): | |
n = len(a) | |
z = matmul(a, a) | |
b = [[0 for j in range(n)] for i in range(n)] | |
cnt = 0 | |
for i in range(n): | |
for j in range(n): | |
if(i != j and (a[i][j] == 1 or z[i][j] > 0)): | |
b[i][j] = 1 | |
cnt += 1 | |
if(cnt == n * n - n): | |
return [[(2 * b[i][j] - a[i][j]) for j in range(n)] for i in range(n)] | |
t = seidel(b) | |
x = matmul(t, a) | |
degree = [sum([a[j][i] for j in range(n)]) for i in range(n)] | |
result = [[0 for j in range(n)] for i in range(n)] | |
for i in range(n): | |
for j in range(n): | |
if(x[i][j] >= t[i][j] * degree[j]): | |
result[i][j] = 2 * t[i][j] | |
else: | |
result[i][j] = (2 * t[i][j]) - 1 | |
return result | |
class Graph: | |
def __init__(self, n): | |
self.n = n | |
self.graph = [[0 for j in range(n)] for i in range(n)] | |
def insertEdge(self, u, v, w): | |
self.graph[u - 1][v - 1] = w | |
if(w > 50): | |
self.graph[v - 1][u - 1] = 1 | |
else: | |
self.graph[v - 1][u - 1] = abs(50 - w) | |
def printDist(self, dist): | |
print("vertex", "\t", "Distance") | |
for i in range(self.n): | |
print(i, "\t", dist[i]) | |
def getMinNode(self, dist, computed, sh, steps): | |
minval = sys.maxsize | |
node = -1 | |
compute = 0 | |
for i in range(self.n): | |
if(not computed[i] and dist[i] + (15 * ((sh[i] if sh[i] >= steps else 0))) ** 6 < minval): | |
compute += 1 | |
minval = dist[i] + (15 * ((sh[i] if sh[i] >= steps else 0))) ** 6 | |
node = i | |
# print("Node: ", i) | |
# print("Distance: ", dist[i], " ,sh: ", sh[i]) | |
# print("Minval: ", minval) | |
# print("Return Node: ", node) | |
return [node, compute] | |
def dijkstra(self, src, dest, steps): | |
compute = 0 | |
steps = 0 | |
dist = [sys.maxsize for i in range(self.n)] | |
frm = [-1 for i in range(self.n)] | |
dist[src] = 0 | |
computed = [False for i in range(self.n)] | |
sh = [0 for i in range(self.n)] | |
for _ in range(self.n): | |
[u, cmp] = self.getMinNode(dist, computed, sh, steps) | |
compute += cmp | |
computed[u] = True | |
compute += 1 | |
steps += 1 | |
for k in range(self.n): | |
if(not computed[k] and self.graph[u][k] > 0 and (dist[u] + self.graph[u][k]) < dist[k]): | |
compute += 1 | |
dist[k] = dist[u] + self.graph[u][k] | |
sh[k] = steps | |
frm[k] = u | |
if(frm[dest] != -1): | |
print("Compute: ", compute) | |
print("Distance: ", dist[dest]) | |
break | |
g = Graph(30) | |
g.insertEdge(1, 2, 100) | |
g.insertEdge(1, 3, 200) | |
g.insertEdge(2, 4, 140) | |
g.insertEdge(3, 4, 70) | |
g.insertEdge(1, 5, 1) | |
g.insertEdge(5, 6, 2) | |
g.insertEdge(5, 7, 2) | |
g.insertEdge(5, 8, 1) | |
g.insertEdge(8, 9, 2) | |
g.insertEdge(8, 10, 2) | |
g.insertEdge(8, 11, 1) | |
g.insertEdge(11, 12, 2) | |
g.insertEdge(11, 13, 2) | |
g.insertEdge(11, 14, 1) | |
g.insertEdge(14, 15, 2) | |
g.insertEdge(14, 16, 2) | |
g.insertEdge(14, 17, 1) | |
g.insertEdge(17, 18, 2) | |
g.insertEdge(17, 19, 2) | |
g.insertEdge(17, 20, 1) | |
g.insertEdge(20, 21, 2) | |
g.insertEdge(20, 22, 2) | |
g.insertEdge(20, 23, 1) | |
g.insertEdge(23, 24, 2) | |
g.insertEdge(23, 25, 2) | |
g.insertEdge(23, 26, 1) | |
g.insertEdge(26, 27, 2) | |
g.insertEdge(26, 28, 2) | |
g.insertEdge(26, 29, 1) | |
g.insertEdge(29, 30, 1) | |
step = seidel(computeAdjacency(g.graph))[0][3] | |
for i in range(100000): | |
g.dijkstra(0, 3, step) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment