Created
May 28, 2019 20:43
-
-
Save Kronuz/f6a30adae8c88b289d501e9abb38ca33 to your computer and use it in GitHub Desktop.
Benchmarking map for Xapian
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* Copyright (c) 2015-2019 Dubalu LLC | |
* Copyright (c) 2017 moya-lang.org | |
* | |
* Redistribution and use in source and binary forms, with or without | |
* modification, are permitted provided that the following conditions are met: | |
* | |
* * Redistributions of source code must retain the above copyright notice, this | |
* list of conditions and the following disclaimer. | |
* | |
* * Redistributions in binary form must reproduce the above copyright notice, | |
* this list of conditions and the following disclaimer in the documentation | |
* and/or other materials provided with the distribution. | |
* | |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
*/ | |
#pragma once | |
#include <cstddef> // for std::size_t | |
#include <deque> // for std::deque | |
#include <limits> // for std::numeric_limits | |
#include <new> // for std::bad_alloc, std::nothrow_t, std::new_handler | |
// __ __ ____ _ | |
// | \/ | ___ _ __ ___ ___ _ __ _ _ | _ \ ___ ___ | | | |
// | |\/| |/ _ \ '_ ` _ \ / _ \| '__| | | | | |_) / _ \ / _ \| | | |
// | | | | __/ | | | | | (_) | | | |_| | | __/ (_) | (_) | | | |
// |_| |_|\___|_| |_| |_|\___/|_| \__, | |_| \___/ \___/|_| | |
// |___/ | |
namespace allocators { | |
template <typename _Tp> | |
class memory_pool_allocator { | |
public: | |
// type definitions | |
typedef std::size_t size_type; | |
typedef std::ptrdiff_t difference_type; | |
typedef _Tp* pointer; | |
typedef const _Tp* const_pointer; | |
typedef _Tp& reference; | |
typedef const _Tp& const_reference; | |
typedef _Tp value_type; | |
private: | |
union alignas(alignof(std::max_align_t)) memory_pool_block { | |
char value[sizeof(value_type)]; | |
memory_pool_block* next; | |
}; | |
std::deque<memory_pool_block> buffer; | |
memory_pool_block* next_free_block = nullptr; | |
public: | |
// constructors and destructor - deleted copy | |
memory_pool_allocator() = default; | |
template<typename _Tp1> | |
memory_pool_allocator(const memory_pool_allocator<_Tp1>&) throw() { } | |
// rebind allocator to type _Tp1 | |
template <typename _Tp1> | |
struct rebind { | |
using other = memory_pool_allocator<_Tp1>; | |
}; | |
// allocate but don't initialize n elements | |
pointer allocate(size_type __n, const void* __hint = static_cast<const void*>(0)) { | |
if (__n != 1 || __hint) { | |
throw std::bad_alloc(); | |
} | |
if (next_free_block) { | |
memory_pool_block* block = next_free_block; | |
next_free_block = block->next; | |
return reinterpret_cast<pointer>(&block->value); | |
} | |
buffer.emplace_back(); | |
return reinterpret_cast<pointer>(&buffer.back().value); | |
} | |
// deallocate storage __p of deleted elements | |
void deallocate(pointer __p, size_type) { | |
auto block = reinterpret_cast<memory_pool_block*>(__p); | |
block->next = next_free_block; | |
next_free_block = block; | |
} | |
// initialize elements of allocated storage __p with value value | |
void construct(pointer __p, const_reference __val) { | |
::new(__p) value_type(__val); | |
} | |
// destroy elements of initialized storage __p | |
void destroy(pointer __p) { | |
__p->~value_type(); | |
} | |
}; | |
template <typename _Tp> | |
inline bool operator==(const memory_pool_allocator<_Tp>& a, const memory_pool_allocator<_Tp>& b) noexcept { return &a == &b; } | |
template <typename _Tp> | |
inline bool operator!=(const memory_pool_allocator<_Tp>& a, const memory_pool_allocator<_Tp>& b) noexcept { return &a != &b; } | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
c++ -std=c++1z -pedantic -Wall -Wextra -O3 -lbenchmark -lbenchmark_main -I. -I./src -I../src -I.. -o benchmark-maps ./benchmark-maps.cc && ./benchmark-maps | |
*/ | |
#include <benchmark/benchmark.h> | |
#include <map> | |
#include <unordered_map> | |
#include "btree.h" | |
#include "allocators.h" | |
static void BM_unordered_map(benchmark::State& state) { | |
for (auto _ : state) { | |
std::unordered_map<int, int> map; | |
for (int i = 0; i < 10000000; ++i) { | |
map.emplace(i, i); | |
} | |
} | |
} | |
BENCHMARK(BM_unordered_map); | |
static void BM_map(benchmark::State& state) { | |
for (auto _ : state) { | |
std::map<int, int> map; | |
for (int i = 0; i < 10000000; ++i) { | |
map.emplace(i, i); | |
} | |
} | |
} | |
BENCHMARK(BM_map); | |
static void BM_map_hint(benchmark::State& state) { | |
for (auto _ : state) { | |
std::map<int, int> map; | |
for (int i = 0; i < 10000000; ++i) { | |
map.emplace_hint(map.end(), i, i); | |
} | |
} | |
} | |
BENCHMARK(BM_map_hint); | |
static void BM_map_allocator(benchmark::State& state) { | |
for (auto _ : state) { | |
std::map<int, int, std::less<int>, allocators::memory_pool_allocator<std::pair<const int, int>>> map; | |
for (int i = 0; i < 10000000; ++i) { | |
map.emplace(i, i); | |
} | |
} | |
} | |
BENCHMARK(BM_map_allocator); | |
static void BM_map_hint_allocator(benchmark::State& state) { | |
for (auto _ : state) { | |
std::map<int, int, std::less<int>, allocators::memory_pool_allocator<std::pair<const int, int>>> map; | |
for (int i = 0; i < 10000000; ++i) { | |
map.emplace_hint(map.end(), i, i); | |
} | |
} | |
} | |
BENCHMARK(BM_map_hint_allocator); | |
static void BM_btree_map(benchmark::State& state) { | |
for (auto _ : state) { | |
btree::map<int, int> map; | |
for (int i = 0; i < 10000000; ++i) { | |
map.emplace(i, i); | |
} | |
} | |
} | |
BENCHMARK(BM_btree_map); | |
static void BM_btree_map_hint(benchmark::State& state) { | |
for (auto _ : state) { | |
btree::map<int, int> map; | |
for (int i = 0; i < 10000000; ++i) { | |
map.emplace_hint(map.end(), i, i); | |
} | |
} | |
} | |
BENCHMARK(BM_btree_map_hint); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Copyright 2013 Google Inc. All Rights Reserved. | |
// | |
// Licensed under the Apache License, Version 2.0 (the "License"); | |
// you may not use this file except in compliance with the License. | |
// You may obtain a copy of the License at | |
// | |
// http://www.apache.org/licenses/LICENSE-2.0 | |
// | |
// Unless required by applicable law or agreed to in writing, software | |
// distributed under the License is distributed on an "AS IS" BASIS, | |
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
// See the License for the specific language governing permissions and | |
// limitations under the License. | |
// | |
// A btree implementation of the STL set and map interfaces. A btree is both | |
// smaller and faster than STL set/map. The red-black tree implementation of | |
// STL set/map has an overhead of 3 pointers (left, right and parent) plus the | |
// node color information for each stored value. So a set<int32> consumes 20 | |
// bytes for each value stored. This btree implementation stores multiple | |
// values on fixed size nodes (usually 256 bytes) and doesn't store child | |
// pointers for leaf nodes. The result is that a btree_set<int32> may use much | |
// less memory per stored value. For the random insertion benchmark in | |
// btree_test.cc, a btree_set<int32> with node-size of 256 uses 4.9 bytes per | |
// stored value. | |
// | |
// The packing of multiple values on to each node of a btree has another effect | |
// besides better space utilization: better cache locality due to fewer cache | |
// lines being accessed. Better cache locality translates into faster | |
// operations. | |
// | |
// CAVEATS | |
// | |
// Insertions and deletions on a btree can cause splitting, merging or | |
// rebalancing of btree nodes. And even without these operations, insertions | |
// and deletions on a btree will move values around within a node. In both | |
// cases, the result is that insertions and deletions can invalidate iterators | |
// pointing to values other than the one being inserted/deleted. This is | |
// notably different from STL set/map which takes care to not invalidate | |
// iterators on insert/erase except, of course, for iterators pointing to the | |
// value being erased. A partial workaround when erasing is available: | |
// erase() returns an iterator pointing to the item just after the one that was | |
// erased (or end() if none exists). See also safe_btree. | |
// PERFORMANCE | |
// | |
// btree_bench --benchmarks=. 2>&1 | ./benchmarks.awk | |
// | |
// Run on pmattis-warp.nyc (4 X 2200 MHz CPUs); 2010/03/04-15:23:06 | |
// Benchmark STL(ns) B-Tree(ns) @ <size> | |
// -------------------------------------------------------- | |
// BM_set_int32_insert 1516 608 +59.89% <256> [40.0, 5.2] | |
// BM_set_int32_lookup 1160 414 +64.31% <256> [40.0, 5.2] | |
// BM_set_int32_fulllookup 960 410 +57.29% <256> [40.0, 4.4] | |
// BM_set_int32_delete 1741 528 +69.67% <256> [40.0, 5.2] | |
// BM_set_int32_queueaddrem 3078 1046 +66.02% <256> [40.0, 5.5] | |
// BM_set_int32_mixedaddrem 3600 1384 +61.56% <256> [40.0, 5.3] | |
// BM_set_int32_fifo 227 113 +50.22% <256> [40.0, 4.4] | |
// BM_set_int32_fwditer 158 26 +83.54% <256> [40.0, 5.2] | |
// BM_map_int32_insert 1551 636 +58.99% <256> [48.0, 10.5] | |
// BM_map_int32_lookup 1200 508 +57.67% <256> [48.0, 10.5] | |
// BM_map_int32_fulllookup 989 487 +50.76% <256> [48.0, 8.8] | |
// BM_map_int32_delete 1794 628 +64.99% <256> [48.0, 10.5] | |
// BM_map_int32_queueaddrem 3189 1266 +60.30% <256> [48.0, 11.6] | |
// BM_map_int32_mixedaddrem 3822 1623 +57.54% <256> [48.0, 10.9] | |
// BM_map_int32_fifo 151 134 +11.26% <256> [48.0, 8.8] | |
// BM_map_int32_fwditer 161 32 +80.12% <256> [48.0, 10.5] | |
// BM_set_int64_insert 1546 636 +58.86% <256> [40.0, 10.5] | |
// BM_set_int64_lookup 1200 512 +57.33% <256> [40.0, 10.5] | |
// BM_set_int64_fulllookup 971 487 +49.85% <256> [40.0, 8.8] | |
// BM_set_int64_delete 1745 616 +64.70% <256> [40.0, 10.5] | |
// BM_set_int64_queueaddrem 3163 1195 +62.22% <256> [40.0, 11.6] | |
// BM_set_int64_mixedaddrem 3760 1564 +58.40% <256> [40.0, 10.9] | |
// BM_set_int64_fifo 146 103 +29.45% <256> [40.0, 8.8] | |
// BM_set_int64_fwditer 162 31 +80.86% <256> [40.0, 10.5] | |
// BM_map_int64_insert 1551 720 +53.58% <256> [48.0, 20.7] | |
// BM_map_int64_lookup 1214 612 +49.59% <256> [48.0, 20.7] | |
// BM_map_int64_fulllookup 994 592 +40.44% <256> [48.0, 17.2] | |
// BM_map_int64_delete 1778 764 +57.03% <256> [48.0, 20.7] | |
// BM_map_int64_queueaddrem 3189 1547 +51.49% <256> [48.0, 20.9] | |
// BM_map_int64_mixedaddrem 3779 1887 +50.07% <256> [48.0, 21.6] | |
// BM_map_int64_fifo 147 145 +1.36% <256> [48.0, 17.2] | |
// BM_map_int64_fwditer 162 41 +74.69% <256> [48.0, 20.7] | |
// BM_set_string_insert 1989 1966 +1.16% <256> [64.0, 44.5] | |
// BM_set_string_lookup 1709 1600 +6.38% <256> [64.0, 44.5] | |
// BM_set_string_fulllookup 1573 1529 +2.80% <256> [64.0, 35.4] | |
// BM_set_string_delete 2520 1920 +23.81% <256> [64.0, 44.5] | |
// BM_set_string_queueaddrem 4706 4309 +8.44% <256> [64.0, 48.3] | |
// BM_set_string_mixedaddrem 5080 4654 +8.39% <256> [64.0, 46.7] | |
// BM_set_string_fifo 318 512 -61.01% <256> [64.0, 35.4] | |
// BM_set_string_fwditer 182 93 +48.90% <256> [64.0, 44.5] | |
// BM_map_string_insert 2600 2227 +14.35% <256> [72.0, 55.8] | |
// BM_map_string_lookup 2068 1730 +16.34% <256> [72.0, 55.8] | |
// BM_map_string_fulllookup 1859 1618 +12.96% <256> [72.0, 44.0] | |
// BM_map_string_delete 3168 2080 +34.34% <256> [72.0, 55.8] | |
// BM_map_string_queueaddrem 5840 4701 +19.50% <256> [72.0, 59.4] | |
// BM_map_string_mixedaddrem 6400 5200 +18.75% <256> [72.0, 57.8] | |
// BM_map_string_fifo 398 596 -49.75% <256> [72.0, 44.0] | |
// BM_map_string_fwditer 243 113 +53.50% <256> [72.0, 55.8] | |
#ifndef UTIL_BTREE_BTREE_H__ | |
#define UTIL_BTREE_BTREE_H__ | |
#include <assert.h> | |
#include <stddef.h> | |
#include <string.h> | |
#include <sys/types.h> | |
#include <algorithm> | |
#include <functional> | |
#include <iosfwd> | |
#include <iostream> | |
#include <iterator> | |
#include <limits> | |
#include <memory> | |
#include <new> | |
#include <ostream> | |
#include <string> | |
#include <type_traits> | |
#include <utility> | |
#ifndef NDEBUG | |
#define NDEBUG 1 | |
#endif | |
namespace btree { | |
// Inside a btree method, if we just call swap(), it will choose the | |
// btree::swap method, which we don't want. And we can't say ::swap | |
// because then MSVC won't pickup any std::swap() implementations. We | |
// can't just use std::swap() directly because then we don't get the | |
// specialization for types outside the std namespace. So the solution | |
// is to have a special swap helper function whose name doesn't | |
// collide with other swap functions defined by the btree classes. | |
template <typename T> | |
inline void btree_swap_helper(T &a, T &b) { | |
using std::swap; | |
swap(a, b); | |
} | |
// A template helper used to select A or B based on a condition. | |
template<bool cond, typename A, typename B> | |
struct if_{ | |
typedef A type; | |
}; | |
template<typename A, typename B> | |
struct if_<false, A, B> { | |
typedef B type; | |
}; | |
// Types small_ and big_ are promise that sizeof(small_) < sizeof(big_) | |
typedef char small_; | |
struct big_ { | |
char dummy[2]; | |
}; | |
// A compile-time assertion. | |
template <bool> | |
struct CompileAssert { | |
}; | |
#define COMPILE_ASSERT(expr, msg) \ | |
typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1] | |
// A helper type used to indicate that a key-compare-to functor has been | |
// provided. A user can specify a key-compare-to functor by doing: | |
// | |
// struct MyStringComparer | |
// : public util::btree::btree_key_compare_to_tag { | |
// int operator()(const string &a, const string &b) const { | |
// return a.compare(b); | |
// } | |
// }; | |
// | |
// Note that the return type is an int and not a bool. There is a | |
// COMPILE_ASSERT which enforces this return type. | |
struct btree_key_compare_to_tag { | |
}; | |
// A helper class that indicates if the Compare parameter is derived from | |
// btree_key_compare_to_tag. | |
template <typename Compare> | |
struct btree_is_key_compare_to | |
: public std::is_convertible<Compare, btree_key_compare_to_tag> { | |
}; | |
// A helper class to convert a boolean comparison into a three-way | |
// "compare-to" comparison that returns a negative value to indicate | |
// less-than, zero to indicate equality and a positive value to | |
// indicate greater-than. This helper class is specialized for | |
// less<string> and greater<string>. The btree_key_compare_to_adapter | |
// class is provided so that btree users automatically get the more | |
// efficient compare-to code when using common google string types | |
// with common comparison functors. | |
template <typename Compare> | |
struct btree_key_compare_to_adapter : Compare { | |
btree_key_compare_to_adapter() { } | |
btree_key_compare_to_adapter(const Compare &c) : Compare(c) { } | |
btree_key_compare_to_adapter(const btree_key_compare_to_adapter<Compare> &c) | |
: Compare(c) { | |
} | |
}; | |
template <> | |
struct btree_key_compare_to_adapter<std::less<std::string> > | |
: public btree_key_compare_to_tag { | |
btree_key_compare_to_adapter() {} | |
btree_key_compare_to_adapter(const std::less<std::string>&) {} | |
btree_key_compare_to_adapter( | |
const btree_key_compare_to_adapter<std::less<std::string> >&) {} | |
int operator()(const std::string &a, const std::string &b) const { | |
return a.compare(b); | |
} | |
}; | |
template <> | |
struct btree_key_compare_to_adapter<std::greater<std::string> > | |
: public btree_key_compare_to_tag { | |
btree_key_compare_to_adapter() {} | |
btree_key_compare_to_adapter(const std::greater<std::string>&) {} | |
btree_key_compare_to_adapter( | |
const btree_key_compare_to_adapter<std::greater<std::string> >&) {} | |
int operator()(const std::string &a, const std::string &b) const { | |
return b.compare(a); | |
} | |
}; | |
// A helper class that allows a compare-to functor to behave like a plain | |
// compare functor. This specialization is used when we do not have a | |
// compare-to functor. | |
template <typename Key, typename Compare, bool HaveCompareTo> | |
struct btree_key_comparer { | |
btree_key_comparer() {} | |
btree_key_comparer(Compare c) : comp(c) {} | |
static bool bool_compare(const Compare &comp, const Key &x, const Key &y) { | |
return comp(x, y); | |
} | |
bool operator()(const Key &x, const Key &y) const { | |
return bool_compare(comp, x, y); | |
} | |
Compare comp; | |
}; | |
// A specialization of btree_key_comparer when a compare-to functor is | |
// present. We need a plain (boolean) comparison in some parts of the btree | |
// code, such as insert-with-hint. | |
template <typename Key, typename Compare> | |
struct btree_key_comparer<Key, Compare, true> { | |
btree_key_comparer() {} | |
btree_key_comparer(Compare c) : comp(c) {} | |
static bool bool_compare(const Compare &comp, const Key &x, const Key &y) { | |
return comp(x, y) < 0; | |
} | |
bool operator()(const Key &x, const Key &y) const { | |
return bool_compare(comp, x, y); | |
} | |
Compare comp; | |
}; | |
// A helper function to compare to keys using the specified compare | |
// functor. This dispatches to the appropriate btree_key_comparer comparison, | |
// depending on whether we have a compare-to functor or not (which depends on | |
// whether Compare is derived from btree_key_compare_to_tag). | |
template <typename Key, typename Compare> | |
static bool btree_compare_keys( | |
const Compare &comp, const Key &x, const Key &y) { | |
typedef btree_key_comparer<Key, Compare, | |
btree_is_key_compare_to<Compare>::value> key_comparer; | |
return key_comparer::bool_compare(comp, x, y); | |
} | |
template <typename Key, typename Compare, | |
typename Alloc, int TargetNodeSize, int ValueSize> | |
struct btree_common_params { | |
// If Compare is derived from btree_key_compare_to_tag then use it as the | |
// key_compare type. Otherwise, use btree_key_compare_to_adapter<> which will | |
// fall-back to Compare if we don't have an appropriate specialization. | |
typedef typename if_< | |
btree_is_key_compare_to<Compare>::value, | |
Compare, btree_key_compare_to_adapter<Compare> >::type key_compare; | |
// A type which indicates if we have a key-compare-to functor or a plain old | |
// key-compare functor. | |
typedef btree_is_key_compare_to<key_compare> is_key_compare_to; | |
typedef Alloc allocator_type; | |
typedef Key key_type; | |
typedef ssize_t size_type; | |
typedef ptrdiff_t difference_type; | |
enum { | |
kTargetNodeSize = TargetNodeSize, | |
// Available space for values. This is largest for leaf nodes, | |
// which has overhead no fewer than two pointers. | |
kNodeValueSpace = TargetNodeSize - 2 * sizeof(void*), | |
}; | |
// This is an integral type large enough to hold as many | |
// ValueSize-values as will fit a node of TargetNodeSize bytes. | |
typedef typename if_< | |
(kNodeValueSpace / ValueSize) >= 256, | |
uint16_t, | |
uint8_t>::type node_count_type; | |
}; | |
// A parameters structure for holding the type parameters for a map. | |
template <typename Key, typename Data, typename Compare, | |
typename Alloc, int TargetNodeSize> | |
struct map_params | |
: public btree_common_params<Key, Compare, Alloc, TargetNodeSize, | |
sizeof(Key) + sizeof(Data)> { | |
typedef Data data_type; | |
typedef Data mapped_type; | |
typedef std::pair<const Key, data_type> value_type; | |
typedef value_type* pointer; | |
typedef const value_type* const_pointer; | |
typedef value_type& reference; | |
typedef const value_type& const_reference; | |
enum { | |
kValueSize = sizeof(Key) + sizeof(data_type), | |
}; | |
static const Key& key(const value_type &x) { return x.first; } | |
// static const Key& key(const value_type &x) { return x.first; } | |
static void swap(value_type *a, value_type *b) { | |
btree_swap_helper(const_cast<Key&>(a->first), const_cast<Key&>(b->first)); | |
btree_swap_helper(a->second, b->second); | |
} | |
}; | |
// An adapter class that converts a lower-bound compare into an upper-bound | |
// compare. | |
template <typename Key, typename Compare> | |
struct btree_upper_bound_adapter : public Compare { | |
btree_upper_bound_adapter(Compare c) : Compare(c) {} | |
bool operator()(const Key &a, const Key &b) const { | |
return !static_cast<const Compare&>(*this)(b, a); | |
} | |
}; | |
template <typename Key, typename CompareTo> | |
struct btree_upper_bound_compare_to_adapter : public CompareTo { | |
btree_upper_bound_compare_to_adapter(CompareTo c) : CompareTo(c) {} | |
int operator()(const Key &a, const Key &b) const { | |
return static_cast<const CompareTo&>(*this)(b, a); | |
} | |
}; | |
// Dispatch helper class for using linear search with plain compare. | |
template <typename K, typename N, typename Compare> | |
struct btree_linear_search_plain_compare { | |
static int lower_bound(const K &k, const N &n, Compare comp) { | |
return n.linear_search_plain_compare(k, 0, n.count(), comp); | |
} | |
static int upper_bound(const K &k, const N &n, Compare comp) { | |
typedef btree_upper_bound_adapter<K, Compare> upper_compare; | |
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp)); | |
} | |
}; | |
// Dispatch helper class for using linear search with compare-to | |
template <typename K, typename N, typename CompareTo> | |
struct btree_linear_search_compare_to { | |
static int lower_bound(const K &k, const N &n, CompareTo comp) { | |
return n.linear_search_compare_to(k, 0, n.count(), comp); | |
} | |
static int upper_bound(const K &k, const N &n, CompareTo comp) { | |
typedef btree_upper_bound_adapter<K, | |
btree_key_comparer<K, CompareTo, true> > upper_compare; | |
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp)); | |
} | |
}; | |
// Dispatch helper class for using binary search with plain compare. | |
template <typename K, typename N, typename Compare> | |
struct btree_binary_search_plain_compare { | |
static int lower_bound(const K &k, const N &n, Compare comp) { | |
return n.binary_search_plain_compare(k, 0, n.count(), comp); | |
} | |
static int upper_bound(const K &k, const N &n, Compare comp) { | |
typedef btree_upper_bound_adapter<K, Compare> upper_compare; | |
return n.binary_search_plain_compare(k, 0, n.count(), upper_compare(comp)); | |
} | |
}; | |
// Dispatch helper class for using binary search with compare-to. | |
template <typename K, typename N, typename CompareTo> | |
struct btree_binary_search_compare_to { | |
static int lower_bound(const K &k, const N &n, CompareTo /*comp*/) { | |
return n.binary_search_compare_to(k, 0, n.count(), CompareTo()); | |
} | |
static int upper_bound(const K &k, const N &n, CompareTo comp) { | |
typedef btree_upper_bound_adapter<K, | |
btree_key_comparer<K, CompareTo, true> > upper_compare; | |
return n.linear_search_plain_compare(k, 0, n.count(), upper_compare(comp)); | |
} | |
}; | |
// A node in the btree holding. The same node type is used for both internal | |
// and leaf nodes in the btree, though the nodes are allocated in such a way | |
// that the children array is only valid in internal nodes. | |
template <typename Params> | |
class btree_node { | |
public: | |
typedef Params params_type; | |
typedef btree_node<Params> self_type; | |
typedef typename Params::key_type key_type; | |
typedef typename Params::data_type data_type; | |
typedef typename Params::value_type value_type; | |
typedef typename Params::pointer pointer; | |
typedef typename Params::const_pointer const_pointer; | |
typedef typename Params::reference reference; | |
typedef typename Params::const_reference const_reference; | |
typedef typename Params::key_compare key_compare; | |
typedef typename Params::size_type size_type; | |
typedef typename Params::difference_type difference_type; | |
// Typedefs for the various types of node searches. | |
typedef btree_linear_search_plain_compare< | |
key_type, self_type, key_compare> linear_search_plain_compare_type; | |
typedef btree_linear_search_compare_to< | |
key_type, self_type, key_compare> linear_search_compare_to_type; | |
typedef btree_binary_search_plain_compare< | |
key_type, self_type, key_compare> binary_search_plain_compare_type; | |
typedef btree_binary_search_compare_to< | |
key_type, self_type, key_compare> binary_search_compare_to_type; | |
// If we have a valid key-compare-to type, use linear_search_compare_to, | |
// otherwise use linear_search_plain_compare. | |
typedef typename if_< | |
Params::is_key_compare_to::value, | |
linear_search_compare_to_type, | |
linear_search_plain_compare_type>::type linear_search_type; | |
// If we have a valid key-compare-to type, use binary_search_compare_to, | |
// otherwise use binary_search_plain_compare. | |
typedef typename if_< | |
Params::is_key_compare_to::value, | |
binary_search_compare_to_type, | |
binary_search_plain_compare_type>::type binary_search_type; | |
// If the key is an integral or floating point type, use linear search which | |
// is faster than binary search for such types. Might be wise to also | |
// configure linear search based on node-size. | |
typedef typename if_< | |
std::is_integral<key_type>::value || | |
std::is_floating_point<key_type>::value, | |
linear_search_type, binary_search_type>::type search_type; | |
struct base_fields { | |
typedef typename Params::node_count_type field_type; | |
// A boolean indicating whether the node is a leaf or not. | |
bool leaf; | |
// The position of the node in the node's parent. | |
field_type position; | |
// The maximum number of values the node can hold. | |
field_type max_count; | |
// The count of the number of values in the node. | |
field_type count; | |
// A pointer to the node's parent. | |
btree_node *parent; | |
}; | |
enum { | |
kValueSize = params_type::kValueSize, | |
kTargetNodeSize = params_type::kTargetNodeSize, | |
// Compute how many values we can fit onto a leaf node. | |
kNodeTargetValues = (kTargetNodeSize - sizeof(base_fields)) / kValueSize, | |
// We need a minimum of 3 values per internal node in order to perform | |
// splitting (1 value for the two nodes involved in the split and 1 value | |
// propagated to the parent as the delimiter for the split). | |
kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3, | |
kExactMatch = 1 << 30, | |
kMatchMask = kExactMatch - 1, | |
}; | |
struct leaf_fields : public base_fields { | |
// The array of values. Only the first count of these values have been | |
// constructed and are valid. | |
value_type values[kNodeValues]; | |
}; | |
struct internal_fields : public leaf_fields { | |
// The array of child pointers. The keys in children_[i] are all less than | |
// key(i). The keys in children_[i + 1] are all greater than key(i). There | |
// are always count + 1 children. | |
btree_node *children[kNodeValues + 1]; | |
}; | |
struct root_fields : public internal_fields { | |
btree_node *rightmost; | |
size_type size; | |
}; | |
public: | |
// Getter/setter for whether this is a leaf node or not. This value doesn't | |
// change after the node is created. | |
bool leaf() const { return fields_.leaf; } | |
// Getter for the position of this node in its parent. | |
int position() const { return fields_.position; } | |
void set_position(int v) { fields_.position = v; } | |
// Getter/setter for the number of values stored in this node. | |
int count() const { return fields_.count; } | |
void set_count(int v) { fields_.count = v; } | |
int max_count() const { return fields_.max_count; } | |
// Getter for the parent of this node. | |
btree_node* parent() const { return fields_.parent; } | |
// Getter for whether the node is the root of the tree. The parent of the | |
// root of the tree is the leftmost node in the tree which is guaranteed to | |
// be a leaf. | |
bool is_root() const { return parent()->leaf(); } | |
void make_root() { | |
assert(parent()->is_root()); | |
fields_.parent = fields_.parent->parent(); | |
} | |
// Getter for the rightmost root node field. Only valid on the root node. | |
btree_node* rightmost() const { return fields_.rightmost; } | |
btree_node** mutable_rightmost() { return &fields_.rightmost; } | |
// Getter for the size root node field. Only valid on the root node. | |
size_type size() const { return fields_.size; } | |
size_type* mutable_size() { return &fields_.size; } | |
// Getters for the key/value at position i in the node. | |
const key_type& key(int i) const { | |
return params_type::key(fields_.values[i]); | |
} | |
reference value(int i) { | |
return reinterpret_cast<reference>(fields_.values[i]); | |
} | |
const_reference value(int i) const { | |
return reinterpret_cast<const_reference>(fields_.values[i]); | |
} | |
// Swap value i in this node with value j in node x. | |
void value_swap(int i, btree_node *x, int j) { | |
params_type::swap(&value(i), &x->value(j)); | |
} | |
// Getters/setter for the child at position i in the node. | |
btree_node* child(int i) const { return fields_.children[i]; } | |
btree_node** mutable_child(int i) { return &fields_.children[i]; } | |
void set_child(int i, btree_node *c) { | |
*mutable_child(i) = c; | |
c->fields_.parent = this; | |
c->fields_.position = i; | |
} | |
// Returns the position of the first value whose key is not less than k. | |
template <typename Compare> | |
int lower_bound(const key_type &k, const Compare &comp) const { | |
return search_type::lower_bound(k, *this, comp); | |
} | |
// Returns the position of the first value whose key is greater than k. | |
template <typename Compare> | |
int upper_bound(const key_type &k, const Compare &comp) const { | |
return search_type::upper_bound(k, *this, comp); | |
} | |
// Returns the position of the first value whose key is not less than k using | |
// linear search performed using plain compare. | |
template <typename Compare> | |
int linear_search_plain_compare( | |
const key_type &k, int s, int e, const Compare &comp) const { | |
while (s < e) { | |
if (!btree_compare_keys(comp, key(s), k)) { | |
break; | |
} | |
++s; | |
} | |
return s; | |
} | |
// Returns the position of the first value whose key is not less than k using | |
// linear search performed using compare-to. | |
template <typename Compare> | |
int linear_search_compare_to( | |
const key_type &k, int s, int e, const Compare &comp) const { | |
while (s < e) { | |
int c = comp(key(s), k); | |
if (c == 0) { | |
return s | kExactMatch; | |
} else if (c > 0) { | |
break; | |
} | |
++s; | |
} | |
return s; | |
} | |
// Returns the position of the first value whose key is not less than k using | |
// binary search performed using plain compare. | |
template <typename Compare> | |
int binary_search_plain_compare( | |
const key_type &k, int s, int e, const Compare &comp) const { | |
while (s != e) { | |
int mid = (s + e) / 2; | |
if (btree_compare_keys(comp, key(mid), k)) { | |
s = mid + 1; | |
} else { | |
e = mid; | |
} | |
} | |
return s; | |
} | |
// Returns the position of the first value whose key is not less than k using | |
// binary search performed using compare-to. | |
template <typename CompareTo> | |
int binary_search_compare_to( | |
const key_type &k, int s, int e, const CompareTo &comp) const { | |
while (s != e) { | |
int mid = (s + e) / 2; | |
int c = comp(key(mid), k); | |
if (c < 0) { | |
s = mid + 1; | |
} else if (c > 0) { | |
e = mid; | |
} else { | |
// Need to return the first value whose key is not less than k, which | |
// requires continuing the binary search. Note that we are guaranteed | |
// that the result is an exact match because if "key(mid-1) < k" the | |
// call to binary_search_compare_to() will return "mid". | |
s = binary_search_compare_to(k, s, mid, comp); | |
return s | kExactMatch; | |
} | |
} | |
return s; | |
} | |
// Inserts the value x at position i, shifting all existing values and | |
// children at positions >= i to the right by 1. | |
template <typename ValueType> | |
void insert_value(int i, ValueType &&x); | |
// Removes the value at position i, shifting all existing values and children | |
// at positions > i to the left by 1. | |
void remove_value(int i); | |
// Rebalances a node with its right sibling. | |
void rebalance_right_to_left(btree_node *sibling, int to_move); | |
void rebalance_left_to_right(btree_node *sibling, int to_move); | |
// Splits a node, moving a portion of the node's values to its right sibling. | |
void split(btree_node *sibling, int insert_position); | |
// Merges a node with its right sibling, moving all of the values and the | |
// delimiting key in the parent node onto itself. | |
void merge(btree_node *sibling); | |
// Swap the contents of "this" and "src". | |
void swap(btree_node *src); | |
// Node allocation/deletion routines. | |
static btree_node* init_leaf( | |
leaf_fields *f, btree_node *parent, int max_count) { | |
btree_node *n = reinterpret_cast<btree_node*>(f); | |
f->leaf = 1; | |
f->position = 0; | |
f->max_count = max_count; | |
f->count = 0; | |
f->parent = parent; | |
if (!NDEBUG) { | |
memset(&f->values, 0, max_count * sizeof(value_type)); | |
} | |
return n; | |
} | |
static btree_node* init_internal(internal_fields *f, btree_node *parent) { | |
btree_node *n = init_leaf(f, parent, kNodeValues); | |
f->leaf = 0; | |
if (!NDEBUG) { | |
memset(f->children, 0, sizeof(f->children)); | |
} | |
return n; | |
} | |
static btree_node* init_root(root_fields *f, btree_node *parent) { | |
btree_node *n = init_internal(f, parent); | |
f->rightmost = parent; | |
f->size = parent->count(); | |
return n; | |
} | |
void destroy() { | |
for (int i = 0; i < count(); ++i) { | |
value_destroy(i); | |
} | |
} | |
private: | |
void value_init(int i) { | |
new (&fields_.values[i]) value_type; | |
} | |
template <typename ValueType> | |
void value_init(int i, ValueType &&x) { | |
new (&fields_.values[i]) value_type(std::forward<ValueType>(x)); | |
} | |
void value_destroy(int i) { | |
fields_.values[i].~value_type(); | |
} | |
private: | |
root_fields fields_; | |
private: | |
btree_node(const btree_node&); | |
void operator=(const btree_node&); | |
}; | |
template <typename Node, typename Reference, typename Pointer> | |
struct btree_iterator { | |
typedef typename Node::key_type key_type; | |
typedef typename Node::size_type size_type; | |
typedef typename Node::difference_type difference_type; | |
typedef typename Node::params_type params_type; | |
typedef Node node_type; | |
typedef typename std::remove_const<Node>::type normal_node; | |
typedef const Node const_node; | |
typedef typename params_type::value_type value_type; | |
typedef typename params_type::pointer normal_pointer; | |
typedef typename params_type::reference normal_reference; | |
typedef typename params_type::const_pointer const_pointer; | |
typedef typename params_type::const_reference const_reference; | |
typedef Pointer pointer; | |
typedef Reference reference; | |
typedef std::bidirectional_iterator_tag iterator_category; | |
typedef btree_iterator< | |
normal_node, normal_reference, normal_pointer> iterator; | |
typedef btree_iterator< | |
const_node, const_reference, const_pointer> const_iterator; | |
typedef btree_iterator<Node, Reference, Pointer> self_type; | |
btree_iterator() | |
: node(NULL), | |
position(-1) { | |
} | |
btree_iterator(Node *n, int p) | |
: node(n), | |
position(p) { | |
} | |
btree_iterator(const iterator &x) | |
: node(x.node), | |
position(x.position) { | |
} | |
// Increment/decrement the iterator. | |
void increment() { | |
if (node->leaf() && ++position < node->count()) { | |
return; | |
} | |
increment_slow(); | |
} | |
void increment_by(int count); | |
void increment_slow(); | |
void decrement() { | |
if (node->leaf() && --position >= 0) { | |
return; | |
} | |
decrement_slow(); | |
} | |
void decrement_slow(); | |
bool operator==(const const_iterator &x) const { | |
return node == x.node && position == x.position; | |
} | |
bool operator!=(const const_iterator &x) const { | |
return node != x.node || position != x.position; | |
} | |
// Accessors for the key/value the iterator is pointing at. | |
const key_type& key() const { | |
return node->key(position); | |
} | |
reference operator*() const { | |
return node->value(position); | |
} | |
pointer operator->() const { | |
return &node->value(position); | |
} | |
self_type& operator++() { | |
increment(); | |
return *this; | |
} | |
self_type& operator--() { | |
decrement(); | |
return *this; | |
} | |
self_type operator++(int) { | |
self_type tmp = *this; | |
++*this; | |
return tmp; | |
} | |
self_type operator--(int) { | |
self_type tmp = *this; | |
--*this; | |
return tmp; | |
} | |
// The node in the tree the iterator is pointing at. | |
Node *node; | |
// The position within the node of the tree the iterator is pointing at. | |
int position; | |
}; | |
// Dispatch helper class for using btree::internal_locate with plain compare. | |
struct btree_internal_locate_plain_compare { | |
template <typename K, typename T, typename Iter> | |
static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) { | |
return t.internal_locate_plain_compare(k, iter); | |
} | |
}; | |
// Dispatch helper class for using btree::internal_locate with compare-to. | |
struct btree_internal_locate_compare_to { | |
template <typename K, typename T, typename Iter> | |
static std::pair<Iter, int> dispatch(const K &k, const T &t, Iter iter) { | |
return t.internal_locate_compare_to(k, iter); | |
} | |
}; | |
template <typename Params> | |
class btree : public Params::key_compare { | |
typedef btree<Params> self_type; | |
typedef btree_node<Params> node_type; | |
typedef typename node_type::base_fields base_fields; | |
typedef typename node_type::leaf_fields leaf_fields; | |
typedef typename node_type::internal_fields internal_fields; | |
typedef typename node_type::root_fields root_fields; | |
typedef typename Params::is_key_compare_to is_key_compare_to; | |
friend struct btree_internal_locate_plain_compare; | |
friend struct btree_internal_locate_compare_to; | |
typedef typename if_< | |
is_key_compare_to::value, | |
btree_internal_locate_compare_to, | |
btree_internal_locate_plain_compare>::type internal_locate_type; | |
enum { | |
kNodeValues = node_type::kNodeValues, | |
kMinNodeValues = kNodeValues / 2, | |
kValueSize = node_type::kValueSize, | |
kExactMatch = node_type::kExactMatch, | |
kMatchMask = node_type::kMatchMask, | |
}; | |
// A helper class to get the empty base class optimization for 0-size | |
// allocators. Base is internal_allocator_type. | |
// (e.g. empty_base_handle<internal_allocator_type, node_type*>). If Base is | |
// 0-size, the compiler doesn't have to reserve any space for it and | |
// sizeof(empty_base_handle) will simply be sizeof(Data). Google [empty base | |
// class optimization] for more details. | |
template <typename Base, typename Data> | |
struct empty_base_handle : public Base { | |
empty_base_handle(const Base &b, const Data &d) | |
: Base(b), | |
data(d) { | |
} | |
Data data; | |
}; | |
struct node_stats { | |
node_stats(ssize_t l, ssize_t i) | |
: leaf_nodes(l), | |
internal_nodes(i) { | |
} | |
node_stats& operator+=(const node_stats &x) { | |
leaf_nodes += x.leaf_nodes; | |
internal_nodes += x.internal_nodes; | |
return *this; | |
} | |
ssize_t leaf_nodes; | |
ssize_t internal_nodes; | |
}; | |
public: | |
typedef Params params_type; | |
typedef typename Params::key_type key_type; | |
typedef typename Params::data_type data_type; | |
typedef typename Params::mapped_type mapped_type; | |
typedef typename Params::value_type value_type; | |
typedef typename Params::key_compare key_compare; | |
typedef typename Params::pointer pointer; | |
typedef typename Params::const_pointer const_pointer; | |
typedef typename Params::reference reference; | |
typedef typename Params::const_reference const_reference; | |
typedef typename Params::size_type size_type; | |
typedef typename Params::difference_type difference_type; | |
typedef btree_iterator<node_type, reference, pointer> iterator; | |
typedef typename iterator::const_iterator const_iterator; | |
typedef std::reverse_iterator<const_iterator> const_reverse_iterator; | |
typedef std::reverse_iterator<iterator> reverse_iterator; | |
typedef typename Params::allocator_type allocator_type; | |
typedef typename allocator_type::template rebind<char>::other | |
internal_allocator_type; | |
public: | |
// Default constructor. | |
btree(const key_compare &comp, const allocator_type &alloc); | |
// Copy constructor. | |
btree(const self_type &x); | |
// Destructor. | |
~btree() { | |
clear(); | |
} | |
// Iterator routines. | |
iterator begin() { | |
return iterator(leftmost(), 0); | |
} | |
const_iterator begin() const { | |
return const_iterator(leftmost(), 0); | |
} | |
iterator end() { | |
return iterator(rightmost(), rightmost() ? rightmost()->count() : 0); | |
} | |
const_iterator end() const { | |
return const_iterator(rightmost(), rightmost() ? rightmost()->count() : 0); | |
} | |
reverse_iterator rbegin() { | |
return reverse_iterator(end()); | |
} | |
const_reverse_iterator rbegin() const { | |
return const_reverse_iterator(end()); | |
} | |
reverse_iterator rend() { | |
return reverse_iterator(begin()); | |
} | |
const_reverse_iterator rend() const { | |
return const_reverse_iterator(begin()); | |
} | |
// Finds the first element whose key is not less than key. | |
iterator lower_bound(const key_type &key) { | |
return internal_end( | |
internal_lower_bound(key, iterator(root(), 0))); | |
} | |
const_iterator lower_bound(const key_type &key) const { | |
return internal_end( | |
internal_lower_bound(key, const_iterator(root(), 0))); | |
} | |
// Finds the first element whose key is greater than key. | |
iterator upper_bound(const key_type &key) { | |
return internal_end( | |
internal_upper_bound(key, iterator(root(), 0))); | |
} | |
const_iterator upper_bound(const key_type &key) const { | |
return internal_end( | |
internal_upper_bound(key, const_iterator(root(), 0))); | |
} | |
// Finds the range of values which compare equal to key. The first member of | |
// the returned pair is equal to lower_bound(key). The second member pair of | |
// the pair is equal to upper_bound(key). | |
std::pair<iterator,iterator> equal_range(const key_type &key) { | |
return std::make_pair(lower_bound(key), upper_bound(key)); | |
} | |
std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const { | |
return std::make_pair(lower_bound(key), upper_bound(key)); | |
} | |
// Inserts a value into the btree only if it does not already exist. The | |
// boolean return value indicates whether insertion succeeded or failed. | |
template <typename ValueType> | |
std::pair<iterator, bool> insert_unique(const key_type &key, ValueType &&value); | |
// Inserts a value into the btree only if it does not already exist. The | |
// boolean return value indicates whether insertion succeeded or failed. | |
template <typename ValueType> | |
std::pair<iterator, bool> insert_unique(ValueType &&v) { | |
return insert_unique(params_type::key(v), std::forward<ValueType>(v)); | |
} | |
// Insert with hint. Check to see if the value should be placed immediately | |
// before position in the tree. If it does, then the insertion will take | |
// amortized constant time. If not, the insertion will take amortized | |
// logarithmic time as if a call to insert_unique(v) were made. | |
template <typename ValueType> | |
iterator insert_unique(iterator position, ValueType &&v); | |
// Insert a range of values into the btree. | |
template <typename InputIterator> | |
void insert_unique(InputIterator b, InputIterator e); | |
// Inserts a value into the btree. | |
template <typename ValueType> | |
iterator insert_multi(const key_type &key, ValueType &&value); | |
// Inserts a value into the btree. | |
template <typename ValueType> | |
iterator insert_multi(ValueType &&v) { | |
return insert_multi(params_type::key(v), std::forward<ValueType>(v)); | |
} | |
// Insert with hint. Check to see if the value should be placed immediately | |
// before position in the tree. If it does, then the insertion will take | |
// amortized constant time. If not, the insertion will take amortized | |
// logarithmic time as if a call to insert_multi(v) were made. | |
template <typename ValueType> | |
iterator insert_multi(iterator position, ValueType &&v); | |
// Insert a range of values into the btree. | |
template <typename InputIterator> | |
void insert_multi(InputIterator b, InputIterator e); | |
void assign(const self_type &x); | |
// Erase the specified iterator from the btree. The iterator must be valid | |
// (i.e. not equal to end()). Return an iterator pointing to the node after | |
// the one that was erased (or end() if none exists). | |
iterator erase(iterator iter); | |
// Erases range. Returns the number of keys erased. | |
int erase(iterator begin, iterator end); | |
// Erases the specified key from the btree. Returns 1 if an element was | |
// erased and 0 otherwise. | |
int erase_unique(const key_type &key); | |
// Erases all of the entries matching the specified key from the | |
// btree. Returns the number of elements erased. | |
int erase_multi(const key_type &key); | |
// Finds the iterator corresponding to a key or returns end() if the key is | |
// not present. | |
iterator find_unique(const key_type &key) { | |
return internal_end( | |
internal_find_unique(key, iterator(root(), 0))); | |
} | |
const_iterator find_unique(const key_type &key) const { | |
return internal_end( | |
internal_find_unique(key, const_iterator(root(), 0))); | |
} | |
iterator find_multi(const key_type &key) { | |
return internal_end( | |
internal_find_multi(key, iterator(root(), 0))); | |
} | |
const_iterator find_multi(const key_type &key) const { | |
return internal_end( | |
internal_find_multi(key, const_iterator(root(), 0))); | |
} | |
// Returns a count of the number of times the key appears in the btree. | |
size_type count_unique(const key_type &key) const { | |
const_iterator begin = internal_find_unique( | |
key, const_iterator(root(), 0)); | |
if (!begin.node) { | |
// The key doesn't exist in the tree. | |
return 0; | |
} | |
return 1; | |
} | |
// Returns a count of the number of times the key appears in the btree. | |
size_type count_multi(const key_type &key) const { | |
return distance(lower_bound(key), upper_bound(key)); | |
} | |
// Clear the btree, deleting all of the values it contains. | |
void clear(); | |
// Swap the contents of *this and x. | |
void swap(self_type &x); | |
// Assign the contents of x to *this. | |
self_type& operator=(const self_type &x) { | |
if (&x == this) { | |
// Don't copy onto ourselves. | |
return *this; | |
} | |
assign(x); | |
return *this; | |
} | |
key_compare* mutable_key_comp() { | |
return this; | |
} | |
const key_compare& key_comp() const { | |
return *this; | |
} | |
bool compare_keys(const key_type &x, const key_type &y) const { | |
return btree_compare_keys(key_comp(), x, y); | |
} | |
// Dump the btree to the specified ostream. Requires that operator<< is | |
// defined for Key and Value. | |
void dump(std::ostream &os) const { | |
if (root() != NULL) { | |
internal_dump(os, root(), 0); | |
} | |
} | |
// Verifies the structure of the btree. | |
void verify() const; | |
// Size routines. Note that empty() is slightly faster than doing size()==0. | |
size_type size() const { | |
if (empty()) return 0; | |
if (root()->leaf()) return root()->count(); | |
return root()->size(); | |
} | |
size_type max_size() const { return std::numeric_limits<size_type>::max(); } | |
bool empty() const { return root() == NULL; } | |
// The height of the btree. An empty tree will have height 0. | |
size_type height() const { | |
size_type h = 0; | |
if (root()) { | |
// Count the length of the chain from the leftmost node up to the | |
// root. We actually count from the root back around to the level below | |
// the root, but the calculation is the same because of the circularity | |
// of that traversal. | |
const node_type *n = root(); | |
do { | |
++h; | |
n = n->parent(); | |
} while (n != root()); | |
} | |
return h; | |
} | |
// The number of internal, leaf and total nodes used by the btree. | |
size_type leaf_nodes() const { | |
return internal_stats(root()).leaf_nodes; | |
} | |
size_type internal_nodes() const { | |
return internal_stats(root()).internal_nodes; | |
} | |
size_type nodes() const { | |
node_stats stats = internal_stats(root()); | |
return stats.leaf_nodes + stats.internal_nodes; | |
} | |
// The total number of bytes used by the btree. | |
size_type bytes_used() const { | |
node_stats stats = internal_stats(root()); | |
if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) { | |
return sizeof(*this) + | |
sizeof(base_fields) + root()->max_count() * sizeof(value_type); | |
} else { | |
return sizeof(*this) + | |
sizeof(root_fields) - sizeof(internal_fields) + | |
stats.leaf_nodes * sizeof(leaf_fields) + | |
stats.internal_nodes * sizeof(internal_fields); | |
} | |
} | |
// The average number of bytes used per value stored in the btree. | |
static double average_bytes_per_value() { | |
// Returns the number of bytes per value on a leaf node that is 75% | |
// full. Experimentally, this matches up nicely with the computed number of | |
// bytes per value in trees that had their values inserted in random order. | |
return sizeof(leaf_fields) / (kNodeValues * 0.75); | |
} | |
// The fullness of the btree. Computed as the number of elements in the btree | |
// divided by the maximum number of elements a tree with the current number | |
// of nodes could hold. A value of 1 indicates perfect space | |
// utilization. Smaller values indicate space wastage. | |
double fullness() const { | |
return double(size()) / (nodes() * kNodeValues); | |
} | |
// The overhead of the btree structure in bytes per node. Computed as the | |
// total number of bytes used by the btree minus the number of bytes used for | |
// storing elements divided by the number of elements. | |
double overhead() const { | |
if (empty()) { | |
return 0.0; | |
} | |
return (bytes_used() - size() * kValueSize) / double(size()); | |
} | |
private: | |
// Internal accessor routines. | |
node_type* root() { return root_.data; } | |
const node_type* root() const { return root_.data; } | |
node_type** mutable_root() { return &root_.data; } | |
// The rightmost node is stored in the root node. | |
node_type* rightmost() { | |
return (!root() || root()->leaf()) ? root() : root()->rightmost(); | |
} | |
const node_type* rightmost() const { | |
return (!root() || root()->leaf()) ? root() : root()->rightmost(); | |
} | |
node_type** mutable_rightmost() { return root()->mutable_rightmost(); } | |
// The leftmost node is stored as the parent of the root node. | |
node_type* leftmost() { return root() ? root()->parent() : NULL; } | |
const node_type* leftmost() const { return root() ? root()->parent() : NULL; } | |
// The size of the tree is stored in the root node. | |
size_type* mutable_size() { return root()->mutable_size(); } | |
// Allocator routines. | |
internal_allocator_type* mutable_internal_allocator() { | |
return static_cast<internal_allocator_type*>(&root_); | |
} | |
const internal_allocator_type& internal_allocator() const { | |
return *static_cast<const internal_allocator_type*>(&root_); | |
} | |
// Node creation/deletion routines. | |
node_type* new_internal_node(node_type *parent) { | |
internal_fields *p = reinterpret_cast<internal_fields*>( | |
mutable_internal_allocator()->allocate(sizeof(internal_fields))); | |
return node_type::init_internal(p, parent); | |
} | |
node_type* new_internal_root_node() { | |
root_fields *p = reinterpret_cast<root_fields*>( | |
mutable_internal_allocator()->allocate(sizeof(root_fields))); | |
return node_type::init_root(p, root()->parent()); | |
} | |
node_type* new_leaf_node(node_type *parent) { | |
leaf_fields *p = reinterpret_cast<leaf_fields*>( | |
mutable_internal_allocator()->allocate(sizeof(leaf_fields))); | |
return node_type::init_leaf(p, parent, kNodeValues); | |
} | |
node_type* new_leaf_root_node(int max_count) { | |
leaf_fields *p = reinterpret_cast<leaf_fields*>( | |
mutable_internal_allocator()->allocate( | |
sizeof(base_fields) + max_count * sizeof(value_type))); | |
return node_type::init_leaf(p, reinterpret_cast<node_type*>(p), max_count); | |
} | |
void delete_internal_node(node_type *node) { | |
node->destroy(); | |
assert(node != root()); | |
mutable_internal_allocator()->deallocate( | |
reinterpret_cast<char*>(node), sizeof(internal_fields)); | |
} | |
void delete_internal_root_node() { | |
root()->destroy(); | |
mutable_internal_allocator()->deallocate( | |
reinterpret_cast<char*>(root()), sizeof(root_fields)); | |
} | |
void delete_leaf_node(node_type *node) { | |
node->destroy(); | |
mutable_internal_allocator()->deallocate( | |
reinterpret_cast<char*>(node), | |
sizeof(base_fields) + node->max_count() * sizeof(value_type)); | |
} | |
// Rebalances or splits the node iter points to. | |
void rebalance_or_split(iterator *iter); | |
// Merges the values of left, right and the delimiting key on their parent | |
// onto left, removing the delimiting key and deleting right. | |
void merge_nodes(node_type *left, node_type *right); | |
// Tries to merge node with its left or right sibling, and failing that, | |
// rebalance with its left or right sibling. Returns true if a merge | |
// occurred, at which point it is no longer valid to access node. Returns | |
// false if no merging took place. | |
bool try_merge_or_rebalance(iterator *iter); | |
// Tries to shrink the height of the tree by 1. | |
void try_shrink(); | |
iterator internal_end(iterator iter) { | |
return iter.node ? iter : end(); | |
} | |
const_iterator internal_end(const_iterator iter) const { | |
return iter.node ? iter : end(); | |
} | |
// Inserts a value into the btree immediately before iter. Requires that | |
// key(v) <= iter.key() and (--iter).key() <= key(v). | |
template <typename ValueType> | |
iterator internal_insert(iterator iter, ValueType &&v); | |
// Returns an iterator pointing to the first value >= the value "iter" is | |
// pointing at. Note that "iter" might be pointing to an invalid location as | |
// iter.position == iter.node->count(). This routine simply moves iter up in | |
// the tree to a valid location. | |
template <typename IterType> | |
static IterType internal_last(IterType iter); | |
// Returns an iterator pointing to the leaf position at which key would | |
// reside in the tree. We provide 2 versions of internal_locate. The first | |
// version (internal_locate_plain_compare) always returns 0 for the second | |
// field of the pair. The second version (internal_locate_compare_to) is for | |
// the key-compare-to specialization and returns either kExactMatch (if the | |
// key was found in the tree) or -kExactMatch (if it wasn't) in the second | |
// field of the pair. The compare_to specialization allows the caller to | |
// avoid a subsequent comparison to determine if an exact match was made, | |
// speeding up string keys. | |
template <typename IterType> | |
std::pair<IterType, int> internal_locate( | |
const key_type &key, IterType iter) const; | |
template <typename IterType> | |
std::pair<IterType, int> internal_locate_plain_compare( | |
const key_type &key, IterType iter) const; | |
template <typename IterType> | |
std::pair<IterType, int> internal_locate_compare_to( | |
const key_type &key, IterType iter) const; | |
// Internal routine which implements lower_bound(). | |
template <typename IterType> | |
IterType internal_lower_bound( | |
const key_type &key, IterType iter) const; | |
// Internal routine which implements upper_bound(). | |
template <typename IterType> | |
IterType internal_upper_bound( | |
const key_type &key, IterType iter) const; | |
// Internal routine which implements find_unique(). | |
template <typename IterType> | |
IterType internal_find_unique( | |
const key_type &key, IterType iter) const; | |
// Internal routine which implements find_multi(). | |
template <typename IterType> | |
IterType internal_find_multi( | |
const key_type &key, IterType iter) const; | |
// Deletes a node and all of its children. | |
void internal_clear(node_type *node); | |
// Dumps a node and all of its children to the specified ostream. | |
void internal_dump(std::ostream &os, const node_type *node, int level) const; | |
// Verifies the tree structure of node. | |
int internal_verify(const node_type *node, | |
const key_type *lo, const key_type *hi) const; | |
node_stats internal_stats(const node_type *node) const { | |
if (!node) { | |
return node_stats(0, 0); | |
} | |
if (node->leaf()) { | |
return node_stats(1, 0); | |
} | |
node_stats res(0, 1); | |
for (int i = 0; i <= node->count(); ++i) { | |
res += internal_stats(node->child(i)); | |
} | |
return res; | |
} | |
private: | |
empty_base_handle<internal_allocator_type, node_type*> root_; | |
private: | |
// A never instantiated helper function that returns big_ if we have a | |
// key-compare-to functor or if R is bool and small_ otherwise. | |
template <typename R> | |
static typename if_< | |
if_<is_key_compare_to::value, | |
std::is_same<R, int>, | |
std::is_same<R, bool> >::type::value, | |
big_, small_>::type key_compare_checker(R); | |
// A never instantiated helper function that returns the key comparison | |
// functor. | |
static key_compare key_compare_helper(); | |
// Verify that key_compare returns a bool. This is similar to the way | |
// is_convertible in base/type_traits.h works. Note that key_compare_checker | |
// is never actually invoked. The compiler will select which | |
// key_compare_checker() to instantiate and then figure out the size of the | |
// return type of key_compare_checker() at compile time which we then check | |
// against the sizeof of big_. | |
COMPILE_ASSERT( | |
sizeof(key_compare_checker(key_compare_helper()(key_type(), key_type()))) == | |
sizeof(big_), | |
key_comparison_function_must_return_bool); | |
// Note: We insist on kTargetValues, which is computed from | |
// Params::kTargetNodeSize, must fit the base_fields::field_type. | |
COMPILE_ASSERT(kNodeValues < | |
(1 << (8 * sizeof(typename base_fields::field_type))), | |
target_node_size_too_large); | |
// Test the assumption made in setting kNodeValueSpace. | |
COMPILE_ASSERT(sizeof(base_fields) >= 2 * sizeof(void*), | |
node_space_assumption_incorrect); | |
}; | |
//// | |
// btree_node methods | |
template <typename P> template <typename ValueType> | |
inline void btree_node<P>::insert_value(int i, ValueType &&x) { | |
assert(i <= count()); | |
value_init(count(), std::forward<ValueType>(x)); | |
for (int j = count(); j > i; --j) { | |
value_swap(j, this, j - 1); | |
} | |
set_count(count() + 1); | |
if (!leaf()) { | |
++i; | |
for (int j = count(); j > i; --j) { | |
*mutable_child(j) = child(j - 1); | |
child(j)->set_position(j); | |
} | |
*mutable_child(i) = NULL; | |
} | |
} | |
template <typename P> | |
inline void btree_node<P>::remove_value(int i) { | |
if (!leaf()) { | |
assert(child(i + 1)->count() == 0); | |
for (int j = i + 1; j < count(); ++j) { | |
*mutable_child(j) = child(j + 1); | |
child(j)->set_position(j); | |
} | |
*mutable_child(count()) = NULL; | |
} | |
set_count(count() - 1); | |
for (; i < count(); ++i) { | |
value_swap(i, this, i + 1); | |
} | |
value_destroy(i); | |
} | |
template <typename P> | |
void btree_node<P>::rebalance_right_to_left(btree_node *src, int to_move) { | |
assert(parent() == src->parent()); | |
assert(position() + 1 == src->position()); | |
assert(src->count() >= count()); | |
assert(to_move >= 1); | |
assert(to_move <= src->count()); | |
// Make room in the left node for the new values. | |
for (int i = 0; i < to_move; ++i) { | |
value_init(i + count()); | |
} | |
// Move the delimiting value to the left node and the new delimiting value | |
// from the right node. | |
value_swap(count(), parent(), position()); | |
parent()->value_swap(position(), src, to_move - 1); | |
// Move the values from the right to the left node. | |
for (int i = 1; i < to_move; ++i) { | |
value_swap(count() + i, src, i - 1); | |
} | |
// Shift the values in the right node to their correct position. | |
for (int i = to_move; i < src->count(); ++i) { | |
src->value_swap(i - to_move, src, i); | |
} | |
for (int i = 1; i <= to_move; ++i) { | |
src->value_destroy(src->count() - i); | |
} | |
if (!leaf()) { | |
// Move the child pointers from the right to the left node. | |
for (int i = 0; i < to_move; ++i) { | |
set_child(1 + count() + i, src->child(i)); | |
} | |
for (int i = 0; i <= src->count() - to_move; ++i) { | |
assert(i + to_move <= src->max_count()); | |
src->set_child(i, src->child(i + to_move)); | |
*src->mutable_child(i + to_move) = NULL; | |
} | |
} | |
// Fixup the counts on the src and dest nodes. | |
set_count(count() + to_move); | |
src->set_count(src->count() - to_move); | |
} | |
template <typename P> | |
void btree_node<P>::rebalance_left_to_right(btree_node *dest, int to_move) { | |
assert(parent() == dest->parent()); | |
assert(position() + 1 == dest->position()); | |
assert(count() >= dest->count()); | |
assert(to_move >= 1); | |
assert(to_move <= count()); | |
// Make room in the right node for the new values. | |
for (int i = 0; i < to_move; ++i) { | |
dest->value_init(i + dest->count()); | |
} | |
for (int i = dest->count() - 1; i >= 0; --i) { | |
dest->value_swap(i, dest, i + to_move); | |
} | |
// Move the delimiting value to the right node and the new delimiting value | |
// from the left node. | |
dest->value_swap(to_move - 1, parent(), position()); | |
parent()->value_swap(position(), this, count() - to_move); | |
value_destroy(count() - to_move); | |
// Move the values from the left to the right node. | |
for (int i = 1; i < to_move; ++i) { | |
value_swap(count() - to_move + i, dest, i - 1); | |
value_destroy(count() - to_move + i); | |
} | |
if (!leaf()) { | |
// Move the child pointers from the left to the right node. | |
for (int i = dest->count(); i >= 0; --i) { | |
dest->set_child(i + to_move, dest->child(i)); | |
*dest->mutable_child(i) = NULL; | |
} | |
for (int i = 1; i <= to_move; ++i) { | |
dest->set_child(i - 1, child(count() - to_move + i)); | |
*mutable_child(count() - to_move + i) = NULL; | |
} | |
} | |
// Fixup the counts on the src and dest nodes. | |
set_count(count() - to_move); | |
dest->set_count(dest->count() + to_move); | |
} | |
template <typename P> | |
void btree_node<P>::split(btree_node *dest, int insert_position) { | |
assert(dest->count() == 0); | |
// We bias the split based on the position being inserted. If we're | |
// inserting at the beginning of the left node then bias the split to put | |
// more values on the right node. If we're inserting at the end of the | |
// right node then bias the split to put more values on the left node. | |
if (insert_position == 0) { | |
dest->set_count(count() - 1); | |
} else if (insert_position == max_count()) { | |
dest->set_count(0); | |
} else { | |
dest->set_count(count() / 2); | |
} | |
set_count(count() - dest->count()); | |
assert(count() >= 1); | |
// Move values from the left sibling to the right sibling. | |
for (int i = 0; i < dest->count(); ++i) { | |
dest->value_init(i); | |
value_swap(count() + i, dest, i); | |
value_destroy(count() + i); | |
} | |
// The split key is the largest value in the left sibling. | |
set_count(count() - 1); | |
parent()->insert_value(position(), value_type()); | |
value_swap(count(), parent(), position()); | |
value_destroy(count()); | |
parent()->set_child(position() + 1, dest); | |
if (!leaf()) { | |
for (int i = 0; i <= dest->count(); ++i) { | |
assert(child(count() + i + 1) != NULL); | |
dest->set_child(i, child(count() + i + 1)); | |
*mutable_child(count() + i + 1) = NULL; | |
} | |
} | |
} | |
template <typename P> | |
void btree_node<P>::merge(btree_node *src) { | |
assert(parent() == src->parent()); | |
assert(position() + 1 == src->position()); | |
// Move the delimiting value to the left node. | |
value_init(count()); | |
value_swap(count(), parent(), position()); | |
// Move the values from the right to the left node. | |
for (int i = 0; i < src->count(); ++i) { | |
value_init(1 + count() + i); | |
value_swap(1 + count() + i, src, i); | |
src->value_destroy(i); | |
} | |
if (!leaf()) { | |
// Move the child pointers from the right to the left node. | |
for (int i = 0; i <= src->count(); ++i) { | |
set_child(1 + count() + i, src->child(i)); | |
*src->mutable_child(i) = NULL; | |
} | |
} | |
// Fixup the counts on the src and dest nodes. | |
set_count(1 + count() + src->count()); | |
src->set_count(0); | |
// Remove the value on the parent node. | |
parent()->remove_value(position()); | |
} | |
template <typename P> | |
void btree_node<P>::swap(btree_node *x) { | |
assert(leaf() == x->leaf()); | |
// Swap the values. | |
for (int i = count(); i < x->count(); ++i) { | |
value_init(i); | |
} | |
for (int i = x->count(); i < count(); ++i) { | |
x->value_init(i); | |
} | |
int n = std::max(count(), x->count()); | |
for (int i = 0; i < n; ++i) { | |
value_swap(i, x, i); | |
} | |
for (int i = count(); i < x->count(); ++i) { | |
x->value_destroy(i); | |
} | |
for (int i = x->count(); i < count(); ++i) { | |
value_destroy(i); | |
} | |
if (!leaf()) { | |
// Swap the child pointers. | |
for (int i = 0; i <= n; ++i) { | |
btree_swap_helper(*mutable_child(i), *x->mutable_child(i)); | |
} | |
for (int i = 0; i <= count(); ++i) { | |
x->child(i)->fields_.parent = x; | |
} | |
for (int i = 0; i <= x->count(); ++i) { | |
child(i)->fields_.parent = this; | |
} | |
} | |
// Swap the counts. | |
btree_swap_helper(fields_.count, x->fields_.count); | |
} | |
//// | |
// btree_iterator methods | |
template <typename N, typename R, typename P> | |
void btree_iterator<N, R, P>::increment_slow() { | |
if (node->leaf()) { | |
assert(position >= node->count()); | |
self_type save(*this); | |
while (position == node->count() && !node->is_root()) { | |
assert(node->parent()->child(node->position()) == node); | |
position = node->position(); | |
node = node->parent(); | |
} | |
if (position == node->count()) { | |
*this = save; | |
} | |
} else { | |
assert(position < node->count()); | |
node = node->child(position + 1); | |
while (!node->leaf()) { | |
node = node->child(0); | |
} | |
position = 0; | |
} | |
} | |
template <typename N, typename R, typename P> | |
void btree_iterator<N, R, P>::increment_by(int count) { | |
while (count > 0) { | |
if (node->leaf()) { | |
int rest = node->count() - position; | |
position += std::min(rest, count); | |
count = count - rest; | |
if (position < node->count()) { | |
return; | |
} | |
} else { | |
--count; | |
} | |
increment_slow(); | |
} | |
} | |
template <typename N, typename R, typename P> | |
void btree_iterator<N, R, P>::decrement_slow() { | |
if (node->leaf()) { | |
assert(position <= -1); | |
self_type save(*this); | |
while (position < 0 && !node->is_root()) { | |
assert(node->parent()->child(node->position()) == node); | |
position = node->position() - 1; | |
node = node->parent(); | |
} | |
if (position < 0) { | |
*this = save; | |
} | |
} else { | |
assert(position >= 0); | |
node = node->child(position); | |
while (!node->leaf()) { | |
node = node->child(node->count()); | |
} | |
position = node->count() - 1; | |
} | |
} | |
//// | |
// btree methods | |
template <typename P> | |
btree<P>::btree(const key_compare &comp, const allocator_type &alloc) | |
: key_compare(comp), | |
root_(alloc, NULL) { | |
} | |
template <typename P> | |
btree<P>::btree(const self_type &x) | |
: key_compare(x.key_comp()), | |
root_(x.internal_allocator(), NULL) { | |
assign(x); | |
} | |
template <typename P> template <typename ValueType> | |
std::pair<typename btree<P>::iterator, bool> | |
btree<P>::insert_unique(const key_type &key, ValueType &&value) { | |
if (empty()) { | |
*mutable_root() = new_leaf_root_node(1); | |
} | |
std::pair<iterator, int> res = internal_locate(key, iterator(root(), 0)); | |
iterator &iter = res.first; | |
if (res.second == kExactMatch) { | |
// The key already exists in the tree, do nothing. | |
return std::make_pair(internal_last(iter), false); | |
} else if (!res.second) { | |
iterator last = internal_last(iter); | |
if (last.node && !compare_keys(key, last.key())) { | |
// The key already exists in the tree, do nothing. | |
return std::make_pair(last, false); | |
} | |
} | |
return std::make_pair(internal_insert(iter, std::forward<ValueType>(value)), true); | |
} | |
template <typename P> template <typename ValueType> | |
inline typename btree<P>::iterator | |
btree<P>::insert_unique(iterator position, ValueType &&v) { | |
if (!empty()) { | |
const key_type &key = params_type::key(v); | |
if (position == end() || compare_keys(key, position.key())) { | |
iterator prev = position; | |
if (position == begin() || compare_keys((--prev).key(), key)) { | |
// prev.key() < key < position.key() | |
return internal_insert(position, std::forward<ValueType>(v)); | |
} | |
} else if (compare_keys(position.key(), key)) { | |
iterator next = position; | |
++next; | |
if (next == end() || compare_keys(key, next.key())) { | |
// position.key() < key < next.key() | |
return internal_insert(next, std::forward<ValueType>(v)); | |
} | |
} else { | |
// position.key() == key | |
return position; | |
} | |
} | |
return insert_unique(std::forward<ValueType>(v)).first; | |
} | |
template <typename P> template <typename InputIterator> | |
void btree<P>::insert_unique(InputIterator b, InputIterator e) { | |
for (; b != e; ++b) { | |
insert_unique(end(), *b); | |
} | |
} | |
template <typename P> template <typename ValueType> | |
typename btree<P>::iterator | |
btree<P>::insert_multi(const key_type &key, ValueType &&value) { | |
if (empty()) { | |
*mutable_root() = new_leaf_root_node(1); | |
} | |
iterator iter = internal_upper_bound(key, iterator(root(), 0)); | |
if (!iter.node) { | |
iter = end(); | |
} | |
return internal_insert(iter, std::forward<ValueType>(value)); | |
} | |
template <typename P> template <typename ValueType> | |
typename btree<P>::iterator | |
btree<P>::insert_multi(iterator position, ValueType &&v) { | |
if (!empty()) { | |
const key_type &key = params_type::key(v); | |
if (position == end() || !compare_keys(position.key(), key)) { | |
iterator prev = position; | |
if (position == begin() || !compare_keys(key, (--prev).key())) { | |
// prev.key() <= key <= position.key() | |
return internal_insert(position, std::forward<ValueType>(v)); | |
} | |
} else { | |
iterator next = position; | |
++next; | |
if (next == end() || !compare_keys(next.key(), key)) { | |
// position.key() < key <= next.key() | |
return internal_insert(next, std::forward<ValueType>(v)); | |
} | |
} | |
} | |
return insert_multi(std::forward<ValueType>(v)); | |
} | |
template <typename P> template <typename InputIterator> | |
void btree<P>::insert_multi(InputIterator b, InputIterator e) { | |
for (; b != e; ++b) { | |
insert_multi(end(), *b); | |
} | |
} | |
template <typename P> | |
void btree<P>::assign(const self_type &x) { | |
clear(); | |
*mutable_key_comp() = x.key_comp(); | |
*mutable_internal_allocator() = x.internal_allocator(); | |
// Assignment can avoid key comparisons because we know the order of the | |
// values is the same order we'll store them in. | |
for (const_iterator iter = x.begin(); iter != x.end(); ++iter) { | |
if (empty()) { | |
insert_multi(*iter); | |
} else { | |
// If the btree is not empty, we can just insert the new value at the end | |
// of the tree! | |
internal_insert(end(), *iter); | |
} | |
} | |
} | |
template <typename P> | |
typename btree<P>::iterator btree<P>::erase(iterator iter) { | |
bool internal_delete = false; | |
if (!iter.node->leaf()) { | |
// Deletion of a value on an internal node. Swap the key with the largest | |
// value of our left child. This is easy, we just decrement iter. | |
iterator tmp_iter(iter--); | |
assert(iter.node->leaf()); | |
assert(!compare_keys(tmp_iter.key(), iter.key())); | |
iter.node->value_swap(iter.position, tmp_iter.node, tmp_iter.position); | |
internal_delete = true; | |
--*mutable_size(); | |
} else if (!root()->leaf()) { | |
--*mutable_size(); | |
} | |
// Delete the key from the leaf. | |
iter.node->remove_value(iter.position); | |
// We want to return the next value after the one we just erased. If we | |
// erased from an internal node (internal_delete == true), then the next | |
// value is ++(++iter). If we erased from a leaf node (internal_delete == | |
// false) then the next value is ++iter. Note that ++iter may point to an | |
// internal node and the value in the internal node may move to a leaf node | |
// (iter.node) when rebalancing is performed at the leaf level. | |
// Merge/rebalance as we walk back up the tree. | |
iterator res(iter); | |
for (;;) { | |
if (iter.node == root()) { | |
try_shrink(); | |
if (empty()) { | |
return end(); | |
} | |
break; | |
} | |
if (iter.node->count() >= kMinNodeValues) { | |
break; | |
} | |
bool merged = try_merge_or_rebalance(&iter); | |
if (iter.node->leaf()) { | |
res = iter; | |
} | |
if (!merged) { | |
break; | |
} | |
iter.node = iter.node->parent(); | |
} | |
// Adjust our return value. If we're pointing at the end of a node, advance | |
// the iterator. | |
if (res.position == res.node->count()) { | |
res.position = res.node->count() - 1; | |
++res; | |
} | |
// If we erased from an internal node, advance the iterator. | |
if (internal_delete) { | |
++res; | |
} | |
return res; | |
} | |
template <typename P> | |
int btree<P>::erase(iterator begin, iterator end) { | |
int count = distance(begin, end); | |
for (int i = 0; i < count; i++) { | |
begin = erase(begin); | |
} | |
return count; | |
} | |
template <typename P> | |
int btree<P>::erase_unique(const key_type &key) { | |
iterator iter = internal_find_unique(key, iterator(root(), 0)); | |
if (!iter.node) { | |
// The key doesn't exist in the tree, return nothing done. | |
return 0; | |
} | |
erase(iter); | |
return 1; | |
} | |
template <typename P> | |
int btree<P>::erase_multi(const key_type &key) { | |
iterator begin = internal_lower_bound(key, iterator(root(), 0)); | |
if (!begin.node) { | |
// The key doesn't exist in the tree, return nothing done. | |
return 0; | |
} | |
// Delete all of the keys between begin and upper_bound(key). | |
iterator end = internal_end( | |
internal_upper_bound(key, iterator(root(), 0))); | |
return erase(begin, end); | |
} | |
template <typename P> | |
void btree<P>::clear() { | |
if (root() != NULL) { | |
internal_clear(root()); | |
} | |
*mutable_root() = NULL; | |
} | |
template <typename P> | |
void btree<P>::swap(self_type &x) { | |
std::swap(static_cast<key_compare&>(*this), static_cast<key_compare&>(x)); | |
std::swap(root_, x.root_); | |
} | |
template <typename P> | |
void btree<P>::verify() const { | |
if (root() != NULL) { | |
assert(size() == internal_verify(root(), NULL, NULL)); | |
assert(leftmost() == (++const_iterator(root(), -1)).node); | |
assert(rightmost() == (--const_iterator(root(), root()->count())).node); | |
assert(leftmost()->leaf()); | |
assert(rightmost()->leaf()); | |
} else { | |
assert(size() == 0); | |
assert(leftmost() == NULL); | |
assert(rightmost() == NULL); | |
} | |
} | |
template <typename P> | |
void btree<P>::rebalance_or_split(iterator *iter) { | |
node_type *&node = iter->node; | |
int &insert_position = iter->position; | |
assert(node->count() == node->max_count()); | |
// First try to make room on the node by rebalancing. | |
node_type *parent = node->parent(); | |
if (node != root()) { | |
if (node->position() > 0) { | |
// Try rebalancing with our left sibling. | |
node_type *left = parent->child(node->position() - 1); | |
if (left->count() < left->max_count()) { | |
// We bias rebalancing based on the position being inserted. If we're | |
// inserting at the end of the right node then we bias rebalancing to | |
// fill up the left node. | |
int to_move = (left->max_count() - left->count()) / | |
(1 + (insert_position < left->max_count())); | |
to_move = std::max(1, to_move); | |
if (((insert_position - to_move) >= 0) || | |
((left->count() + to_move) < left->max_count())) { | |
left->rebalance_right_to_left(node, to_move); | |
assert(node->max_count() - node->count() == to_move); | |
insert_position = insert_position - to_move; | |
if (insert_position < 0) { | |
insert_position = insert_position + left->count() + 1; | |
node = left; | |
} | |
assert(node->count() < node->max_count()); | |
return; | |
} | |
} | |
} | |
if (node->position() < parent->count()) { | |
// Try rebalancing with our right sibling. | |
node_type *right = parent->child(node->position() + 1); | |
if (right->count() < right->max_count()) { | |
// We bias rebalancing based on the position being inserted. If we're | |
// inserting at the beginning of the left node then we bias rebalancing | |
// to fill up the right node. | |
int to_move = (right->max_count() - right->count()) / | |
(1 + (insert_position > 0)); | |
to_move = std::max(1, to_move); | |
if ((insert_position <= (node->count() - to_move)) || | |
((right->count() + to_move) < right->max_count())) { | |
node->rebalance_left_to_right(right, to_move); | |
if (insert_position > node->count()) { | |
insert_position = insert_position - node->count() - 1; | |
node = right; | |
} | |
assert(node->count() < node->max_count()); | |
return; | |
} | |
} | |
} | |
// Rebalancing failed, make sure there is room on the parent node for a new | |
// value. | |
if (parent->count() == parent->max_count()) { | |
iterator parent_iter(node->parent(), node->position()); | |
rebalance_or_split(&parent_iter); | |
} | |
} else { | |
// Rebalancing not possible because this is the root node. | |
if (root()->leaf()) { | |
// The root node is currently a leaf node: create a new root node and set | |
// the current root node as the child of the new root. | |
parent = new_internal_root_node(); | |
parent->set_child(0, root()); | |
*mutable_root() = parent; | |
assert(*mutable_rightmost() == parent->child(0)); | |
} else { | |
// The root node is an internal node. We do not want to create a new root | |
// node because the root node is special and holds the size of the tree | |
// and a pointer to the rightmost node. So we create a new internal node | |
// and move all of the items on the current root into the new node. | |
parent = new_internal_node(parent); | |
parent->set_child(0, parent); | |
parent->swap(root()); | |
node = parent; | |
} | |
} | |
// Split the node. | |
node_type *split_node; | |
if (node->leaf()) { | |
split_node = new_leaf_node(parent); | |
node->split(split_node, insert_position); | |
if (rightmost() == node) { | |
*mutable_rightmost() = split_node; | |
} | |
} else { | |
split_node = new_internal_node(parent); | |
node->split(split_node, insert_position); | |
} | |
if (insert_position > node->count()) { | |
insert_position = insert_position - node->count() - 1; | |
node = split_node; | |
} | |
} | |
template <typename P> | |
void btree<P>::merge_nodes(node_type *left, node_type *right) { | |
left->merge(right); | |
if (right->leaf()) { | |
if (rightmost() == right) { | |
*mutable_rightmost() = left; | |
} | |
delete_leaf_node(right); | |
} else { | |
delete_internal_node(right); | |
} | |
} | |
template <typename P> | |
bool btree<P>::try_merge_or_rebalance(iterator *iter) { | |
node_type *parent = iter->node->parent(); | |
if (iter->node->position() > 0) { | |
// Try merging with our left sibling. | |
node_type *left = parent->child(iter->node->position() - 1); | |
if ((1 + left->count() + iter->node->count()) <= left->max_count()) { | |
iter->position += 1 + left->count(); | |
merge_nodes(left, iter->node); | |
iter->node = left; | |
return true; | |
} | |
} | |
if (iter->node->position() < parent->count()) { | |
// Try merging with our right sibling. | |
node_type *right = parent->child(iter->node->position() + 1); | |
if ((1 + iter->node->count() + right->count()) <= right->max_count()) { | |
merge_nodes(iter->node, right); | |
return true; | |
} | |
// Try rebalancing with our right sibling. We don't perform rebalancing if | |
// we deleted the first element from iter->node and the node is not | |
// empty. This is a small optimization for the common pattern of deleting | |
// from the front of the tree. | |
if ((right->count() > kMinNodeValues) && | |
((iter->node->count() == 0) || | |
(iter->position > 0))) { | |
int to_move = (right->count() - iter->node->count()) / 2; | |
to_move = std::min(to_move, right->count() - 1); | |
iter->node->rebalance_right_to_left(right, to_move); | |
return false; | |
} | |
} | |
if (iter->node->position() > 0) { | |
// Try rebalancing with our left sibling. We don't perform rebalancing if | |
// we deleted the last element from iter->node and the node is not | |
// empty. This is a small optimization for the common pattern of deleting | |
// from the back of the tree. | |
node_type *left = parent->child(iter->node->position() - 1); | |
if ((left->count() > kMinNodeValues) && | |
((iter->node->count() == 0) || | |
(iter->position < iter->node->count()))) { | |
int to_move = (left->count() - iter->node->count()) / 2; | |
to_move = std::min(to_move, left->count() - 1); | |
left->rebalance_left_to_right(iter->node, to_move); | |
iter->position += to_move; | |
return false; | |
} | |
} | |
return false; | |
} | |
template <typename P> | |
void btree<P>::try_shrink() { | |
if (root()->count() > 0) { | |
return; | |
} | |
// Deleted the last item on the root node, shrink the height of the tree. | |
if (root()->leaf()) { | |
assert(size() == 0); | |
delete_leaf_node(root()); | |
*mutable_root() = NULL; | |
} else { | |
node_type *child = root()->child(0); | |
if (child->leaf()) { | |
// The child is a leaf node so simply make it the root node in the tree. | |
child->make_root(); | |
delete_internal_root_node(); | |
*mutable_root() = child; | |
} else { | |
// The child is an internal node. We want to keep the existing root node | |
// so we move all of the values from the child node into the existing | |
// (empty) root node. | |
child->swap(root()); | |
delete_internal_node(child); | |
} | |
} | |
} | |
template <typename P> template <typename IterType> | |
inline IterType btree<P>::internal_last(IterType iter) { | |
while (iter.node && iter.position == iter.node->count()) { | |
iter.position = iter.node->position(); | |
iter.node = iter.node->parent(); | |
if (iter.node->leaf()) { | |
iter.node = NULL; | |
} | |
} | |
return iter; | |
} | |
template <typename P> template <typename ValueType> | |
inline typename btree<P>::iterator | |
btree<P>::internal_insert(iterator iter, ValueType &&v) { | |
if (!iter.node->leaf()) { | |
// We can't insert on an internal node. Instead, we'll insert after the | |
// previous value which is guaranteed to be on a leaf node. | |
--iter; | |
++iter.position; | |
} | |
if (iter.node->count() == iter.node->max_count()) { | |
// Make room in the leaf for the new item. | |
if (iter.node->max_count() < kNodeValues) { | |
// Insertion into the root where the root is smaller that the full node | |
// size. Simply grow the size of the root node. | |
assert(iter.node == root()); | |
iter.node = new_leaf_root_node( | |
std::min<int>(kNodeValues, 2 * iter.node->max_count())); | |
iter.node->swap(root()); | |
delete_leaf_node(root()); | |
*mutable_root() = iter.node; | |
} else { | |
rebalance_or_split(&iter); | |
++*mutable_size(); | |
} | |
} else if (!root()->leaf()) { | |
++*mutable_size(); | |
} | |
iter.node->insert_value(iter.position, std::forward<ValueType>(v)); | |
return iter; | |
} | |
template <typename P> template <typename IterType> | |
inline std::pair<IterType, int> btree<P>::internal_locate( | |
const key_type &key, IterType iter) const { | |
return internal_locate_type::dispatch(key, *this, iter); | |
} | |
template <typename P> template <typename IterType> | |
inline std::pair<IterType, int> btree<P>::internal_locate_plain_compare( | |
const key_type &key, IterType iter) const { | |
for (;;) { | |
iter.position = iter.node->lower_bound(key, key_comp()); | |
if (iter.node->leaf()) { | |
break; | |
} | |
iter.node = iter.node->child(iter.position); | |
} | |
return std::make_pair(iter, 0); | |
} | |
template <typename P> template <typename IterType> | |
inline std::pair<IterType, int> btree<P>::internal_locate_compare_to( | |
const key_type &key, IterType iter) const { | |
for (;;) { | |
int res = iter.node->lower_bound(key, key_comp()); | |
iter.position = res & kMatchMask; | |
if (res & kExactMatch) { | |
return std::make_pair(iter, static_cast<int>(kExactMatch)); | |
} | |
if (iter.node->leaf()) { | |
break; | |
} | |
iter.node = iter.node->child(iter.position); | |
} | |
return std::make_pair(iter, -kExactMatch); | |
} | |
template <typename P> template <typename IterType> | |
IterType btree<P>::internal_lower_bound( | |
const key_type &key, IterType iter) const { | |
if (iter.node) { | |
for (;;) { | |
iter.position = | |
iter.node->lower_bound(key, key_comp()) & kMatchMask; | |
if (iter.node->leaf()) { | |
break; | |
} | |
iter.node = iter.node->child(iter.position); | |
} | |
iter = internal_last(iter); | |
} | |
return iter; | |
} | |
template <typename P> template <typename IterType> | |
IterType btree<P>::internal_upper_bound( | |
const key_type &key, IterType iter) const { | |
if (iter.node) { | |
for (;;) { | |
iter.position = iter.node->upper_bound(key, key_comp()); | |
if (iter.node->leaf()) { | |
break; | |
} | |
iter.node = iter.node->child(iter.position); | |
} | |
iter = internal_last(iter); | |
} | |
return iter; | |
} | |
template <typename P> template <typename IterType> | |
IterType btree<P>::internal_find_unique( | |
const key_type &key, IterType iter) const { | |
if (iter.node) { | |
std::pair<IterType, int> res = internal_locate(key, iter); | |
if (res.second == kExactMatch) { | |
return res.first; | |
} | |
if (!res.second) { | |
iter = internal_last(res.first); | |
if (iter.node && !compare_keys(key, iter.key())) { | |
return iter; | |
} | |
} | |
} | |
return IterType(NULL, 0); | |
} | |
template <typename P> template <typename IterType> | |
IterType btree<P>::internal_find_multi( | |
const key_type &key, IterType iter) const { | |
if (iter.node) { | |
iter = internal_lower_bound(key, iter); | |
if (iter.node) { | |
iter = internal_last(iter); | |
if (iter.node && !compare_keys(key, iter.key())) { | |
return iter; | |
} | |
} | |
} | |
return IterType(NULL, 0); | |
} | |
template <typename P> | |
void btree<P>::internal_clear(node_type *node) { | |
if (!node->leaf()) { | |
for (int i = 0; i <= node->count(); ++i) { | |
internal_clear(node->child(i)); | |
} | |
if (node == root()) { | |
delete_internal_root_node(); | |
} else { | |
delete_internal_node(node); | |
} | |
} else { | |
delete_leaf_node(node); | |
} | |
} | |
template <typename P> | |
void btree<P>::internal_dump( | |
std::ostream &os, const node_type *node, int level) const { | |
for (int i = 0; i < node->count(); ++i) { | |
if (!node->leaf()) { | |
internal_dump(os, node->child(i), level + 1); | |
} | |
for (int j = 0; j < level; ++j) { | |
os << " "; | |
} | |
os << node->key(i) << " [" << level << "]\n"; | |
} | |
if (!node->leaf()) { | |
internal_dump(os, node->child(node->count()), level + 1); | |
} | |
} | |
template <typename P> | |
int btree<P>::internal_verify( | |
const node_type *node, const key_type *lo, const key_type *hi) const { | |
assert(node->count() > 0); | |
assert(node->count() <= node->max_count()); | |
if (lo) { | |
assert(!compare_keys(node->key(0), *lo)); | |
} | |
if (hi) { | |
assert(!compare_keys(*hi, node->key(node->count() - 1))); | |
} | |
for (int i = 1; i < node->count(); ++i) { | |
assert(!compare_keys(node->key(i), node->key(i - 1))); | |
} | |
int count = node->count(); | |
if (!node->leaf()) { | |
for (int i = 0; i <= node->count(); ++i) { | |
assert(node->child(i) != NULL); | |
assert(node->child(i)->parent() == node); | |
assert(node->child(i)->position() == i); | |
count += internal_verify( | |
node->child(i), | |
(i == 0) ? lo : &node->key(i - 1), | |
(i == node->count()) ? hi : &node->key(i)); | |
} | |
} | |
return count; | |
} | |
// A common base class for btree_set, map, btree_multiset and | |
// btree_multimap. | |
template <typename Tree> | |
class btree_container { | |
typedef btree_container<Tree> self_type; | |
public: | |
typedef typename Tree::params_type params_type; | |
typedef typename Tree::key_type key_type; | |
typedef typename Tree::value_type value_type; | |
typedef typename Tree::key_compare key_compare; | |
typedef typename Tree::allocator_type allocator_type; | |
typedef typename Tree::pointer pointer; | |
typedef typename Tree::const_pointer const_pointer; | |
typedef typename Tree::reference reference; | |
typedef typename Tree::const_reference const_reference; | |
typedef typename Tree::size_type size_type; | |
typedef typename Tree::difference_type difference_type; | |
typedef typename Tree::iterator iterator; | |
typedef typename Tree::const_iterator const_iterator; | |
typedef typename Tree::reverse_iterator reverse_iterator; | |
typedef typename Tree::const_reverse_iterator const_reverse_iterator; | |
public: | |
// Default constructor. | |
btree_container(const key_compare &comp, const allocator_type &alloc) | |
: tree_(comp, alloc) { | |
} | |
// Copy constructor. | |
btree_container(const self_type &x) | |
: tree_(x.tree_) { | |
} | |
// Iterator routines. | |
iterator begin() { return tree_.begin(); } | |
const_iterator begin() const { return tree_.begin(); } | |
iterator end() { return tree_.end(); } | |
const_iterator end() const { return tree_.end(); } | |
reverse_iterator rbegin() { return tree_.rbegin(); } | |
const_reverse_iterator rbegin() const { return tree_.rbegin(); } | |
reverse_iterator rend() { return tree_.rend(); } | |
const_reverse_iterator rend() const { return tree_.rend(); } | |
// Lookup routines. | |
iterator lower_bound(const key_type &key) { | |
return tree_.lower_bound(key); | |
} | |
const_iterator lower_bound(const key_type &key) const { | |
return tree_.lower_bound(key); | |
} | |
iterator upper_bound(const key_type &key) { | |
return tree_.upper_bound(key); | |
} | |
const_iterator upper_bound(const key_type &key) const { | |
return tree_.upper_bound(key); | |
} | |
std::pair<iterator,iterator> equal_range(const key_type &key) { | |
return tree_.equal_range(key); | |
} | |
std::pair<const_iterator,const_iterator> equal_range(const key_type &key) const { | |
return tree_.equal_range(key); | |
} | |
// Utility routines. | |
void clear() { | |
tree_.clear(); | |
} | |
void swap(self_type &x) { | |
tree_.swap(x.tree_); | |
} | |
void dump(std::ostream &os) const { | |
tree_.dump(os); | |
} | |
void verify() const { | |
tree_.verify(); | |
} | |
// Size routines. | |
size_type size() const { return tree_.size(); } | |
size_type max_size() const { return tree_.max_size(); } | |
bool empty() const { return tree_.empty(); } | |
size_type height() const { return tree_.height(); } | |
size_type internal_nodes() const { return tree_.internal_nodes(); } | |
size_type leaf_nodes() const { return tree_.leaf_nodes(); } | |
size_type nodes() const { return tree_.nodes(); } | |
size_type bytes_used() const { return tree_.bytes_used(); } | |
static double average_bytes_per_value() { | |
return Tree::average_bytes_per_value(); | |
} | |
double fullness() const { return tree_.fullness(); } | |
double overhead() const { return tree_.overhead(); } | |
bool operator==(const self_type& x) const { | |
if (size() != x.size()) { | |
return false; | |
} | |
for (const_iterator i = begin(), xi = x.begin(); i != end(); ++i, ++xi) { | |
if (*i != *xi) { | |
return false; | |
} | |
} | |
return true; | |
} | |
bool operator!=(const self_type& other) const { | |
return !operator==(other); | |
} | |
protected: | |
Tree tree_; | |
}; | |
template <typename T> | |
inline std::ostream& operator<<(std::ostream &os, const btree_container<T> &b) { | |
b.dump(os); | |
return os; | |
} | |
// A common base class for btree_set and safe_btree_set. | |
template <typename Tree> | |
class btree_unique_container : public btree_container<Tree> { | |
typedef btree_unique_container<Tree> self_type; | |
typedef btree_container<Tree> super_type; | |
public: | |
typedef typename Tree::key_type key_type; | |
typedef typename Tree::value_type value_type; | |
typedef typename Tree::size_type size_type; | |
typedef typename Tree::key_compare key_compare; | |
typedef typename Tree::allocator_type allocator_type; | |
typedef typename Tree::iterator iterator; | |
typedef typename Tree::const_iterator const_iterator; | |
public: | |
// Default constructor. | |
btree_unique_container(const key_compare &comp = key_compare(), | |
const allocator_type &alloc = allocator_type()) | |
: super_type(comp, alloc) { | |
} | |
// Copy constructor. | |
btree_unique_container(const self_type &x) | |
: super_type(x) { | |
} | |
// Range constructor. | |
template <class InputIterator> | |
btree_unique_container(InputIterator b, InputIterator e, | |
const key_compare &comp = key_compare(), | |
const allocator_type &alloc = allocator_type()) | |
: super_type(comp, alloc) { | |
insert(b, e); | |
} | |
// Lookup routines. | |
iterator find(const key_type &key) { | |
return this->tree_.find_unique(key); | |
} | |
const_iterator find(const key_type &key) const { | |
return this->tree_.find_unique(key); | |
} | |
size_type count(const key_type &key) const { | |
return this->tree_.count_unique(key); | |
} | |
// Insertion routines. | |
std::pair<iterator, bool> insert(const value_type &x) { | |
return this->tree_.insert_unique(x); | |
} | |
template <typename P> | |
std::pair<iterator, bool> insert(P&& x) { | |
return this->tree_.insert_unique(std::forward<P>(x)); | |
} | |
std::pair<iterator, bool> insert(value_type &&x) { | |
return this->tree_.insert_unique(std::move(x)); | |
} | |
iterator insert(iterator position, const value_type &x) { | |
return this->tree_.insert_unique(position, x); | |
} | |
template <typename P> | |
std::pair<iterator, bool> insert(iterator position, P&& x) { | |
return this->tree_.insert_unique(position, std::forward<P>(x)); | |
} | |
iterator insert(iterator position, value_type &&x) { | |
return this->tree_.insert_unique(position, std::move(x)); | |
} | |
template <typename InputIterator> | |
void insert(InputIterator b, InputIterator e) { | |
this->tree_.insert_unique(b, e); | |
} | |
template <typename... Args> | |
std::pair<iterator, bool> emplace(Args&&... args) { | |
return insert(value_type(std::forward<Args>(args)...)); | |
} | |
template <typename... Args> | |
iterator emplace_hint(iterator position, Args&&... args) { | |
return insert(position, value_type(std::forward<Args>(args)...)); | |
} | |
template <typename... Args> | |
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) { | |
auto it = find(k); | |
if (it == this->end()) { | |
return insert(value_type( | |
std::piecewise_construct, | |
std::forward_as_tuple(k), | |
std::forward_as_tuple(std::forward<Args>(args)...))); | |
} | |
return std::make_pair(it, false); | |
} | |
template <typename... Args> | |
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) { | |
auto it = find(k); | |
if (it == this->end()) { | |
return insert(value_type( | |
std::piecewise_construct, | |
std::forward_as_tuple(std::move(k)), | |
std::forward_as_tuple(std::forward<Args>(args)...))); | |
} | |
return std::make_pair(it, false); | |
} | |
template <typename... Args> | |
iterator try_emplace(iterator position, const key_type& k, Args&&... args) { | |
auto it = find(k); | |
if (it == this->end()) { | |
return insert(position, value_type( | |
std::piecewise_construct, | |
std::forward_as_tuple(k), | |
std::forward_as_tuple(std::forward<Args>(args)...))); | |
} | |
return std::make_pair(it, false); | |
} | |
template <typename... Args> | |
iterator try_emplace(iterator position, key_type&& k, Args&&... args) { | |
auto it = find(k); | |
if (it == this->end()) { | |
return insert(position, value_type( | |
std::piecewise_construct, | |
std::forward_as_tuple(std::move(k)), | |
std::forward_as_tuple(std::forward<Args>(args)...))); | |
} | |
return std::make_pair(it, false); | |
} | |
// Deletion routines. | |
int erase(const key_type &key) { | |
return this->tree_.erase_unique(key); | |
} | |
// Erase the specified iterator from the btree. The iterator must be valid | |
// (i.e. not equal to end()). Return an iterator pointing to the node after | |
// the one that was erased (or end() if none exists). | |
iterator erase(const iterator &iter) { | |
return this->tree_.erase(iter); | |
} | |
void erase(const iterator &first, const iterator &last) { | |
this->tree_.erase(first, last); | |
} | |
}; | |
// A common base class for map and safe_map. | |
template <typename Tree> | |
class map_container : public btree_unique_container<Tree> { | |
typedef map_container<Tree> self_type; | |
typedef btree_unique_container<Tree> super_type; | |
public: | |
typedef typename Tree::key_type key_type; | |
typedef typename Tree::data_type data_type; | |
typedef typename Tree::value_type value_type; | |
typedef typename Tree::mapped_type mapped_type; | |
typedef typename Tree::key_compare key_compare; | |
typedef typename Tree::allocator_type allocator_type; | |
public: | |
// Default constructor. | |
map_container(const key_compare &comp = key_compare(), | |
const allocator_type &alloc = allocator_type()) | |
: super_type(comp, alloc) { | |
} | |
// Copy constructor. | |
map_container(const self_type &x) | |
: super_type(x) { | |
} | |
// Range constructor. | |
template <class InputIterator> | |
map_container(InputIterator b, InputIterator e, | |
const key_compare &comp = key_compare(), | |
const allocator_type &alloc = allocator_type()) | |
: super_type(b, e, comp, alloc) { | |
} | |
// Insertion routines. | |
data_type& operator[](const key_type &key) { | |
return this->try_emplace(key).first->second; | |
} | |
data_type& operator[](key_type&& key) { | |
return this->try_emplace(std::move(key)).first->second; | |
} | |
}; | |
// The map class is needed mainly for its constructors. | |
template <typename Key, typename Value, | |
typename Compare = std::less<Key>, | |
typename Alloc = std::allocator<std::pair<const Key, Value> >, | |
int TargetNodeSize = 256> | |
class map : public map_container< | |
btree<map_params<Key, Value, Compare, Alloc, TargetNodeSize> > > { | |
typedef map<Key, Value, Compare, Alloc, TargetNodeSize> self_type; | |
typedef map_params< | |
Key, Value, Compare, Alloc, TargetNodeSize> params_type; | |
typedef btree<params_type> btree_type; | |
typedef map_container<btree_type> super_type; | |
public: | |
typedef typename btree_type::key_compare key_compare; | |
typedef typename btree_type::allocator_type allocator_type; | |
public: | |
// Default constructor. | |
map(const key_compare &comp = key_compare(), | |
const allocator_type &alloc = allocator_type()) | |
: super_type(comp, alloc) { | |
} | |
// Copy constructor. | |
map(const self_type &x) | |
: super_type(x) { | |
} | |
// Range constructor. | |
template <class InputIterator> | |
map(InputIterator b, InputIterator e, | |
const key_compare &comp = key_compare(), | |
const allocator_type &alloc = allocator_type()) | |
: super_type(b, e, comp, alloc) { | |
} | |
}; | |
template <typename K, typename V, typename C, typename A, int N> | |
inline void swap(map<K, V, C, A, N> &x, | |
map<K, V, C, A, N> &y) { | |
x.swap(y); | |
} | |
} // namespace btree | |
#endif // UTIL_BTREE_BTREE_H__ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment