Created
November 23, 2019 18:05
-
-
Save Krucamper/215820727e4670c2945335d52082a9b2 to your computer and use it in GitHub Desktop.
CNN กับ Marvel Cinematic Universe (train model)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
import tensorflow as tf | |
import input_data | |
import model | |
N_CLASSES = 6 | |
IMG_W = 64 | |
IMG_H = 64 | |
BATCH_SIZE = 10 | |
CAPACITY = 100 | |
MAX_STEP = 1000 | |
learning_rate = 0.0005 | |
prepro_image = './genarate' | |
logs_prepro_image = './model_save' | |
train, train_label, val, val_label = input_data.get_files(prepro_image, 0.2) | |
train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY) | |
val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY) | |
train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES) | |
train_loss = model.losses(train_logits, train_label_batch) | |
train_op = model.trainning(train_loss, learning_rate) | |
train_acc = model.evaluation(train_logits, train_label_batch) | |
test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES) | |
test_loss = model.losses(test_logits, val_label_batch) | |
test_acc = model.evaluation(test_logits, val_label_batch) | |
summary_op = tf.summary.merge_all() | |
sess = tf.Session() | |
train_writer = tf.summary.FileWriter(logs_prepro_image, sess.graph) | |
saver = tf.train.Saver() | |
sess.run(tf.global_variables_initializer()) | |
coord = tf.train.Coordinator() | |
threads = tf.train.start_queue_runners(sess=sess, coord=coord) | |
try: | |
for step in np.arange(MAX_STEP): | |
if coord.should_stop(): | |
break | |
_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc]) | |
if step % 10 == 0: | |
print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0)) | |
summary_str = sess.run(summary_op) | |
train_writer.add_summary(summary_str, step) | |
if (step + 1) == MAX_STEP: | |
checkpoint_path = os.path.join(logs_prepro_image, 'model.ckpt') | |
saver.save(sess, checkpoint_path, global_step=step) | |
except tf.errors.OutOfRangeError: | |
print('Done training -- epoch limit reached') | |
finally: | |
coord.request_stop() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment