-
-
Save KushalVenkatesh/e24b962e61d62f295fcbdfef2c4febe4 to your computer and use it in GitHub Desktop.
Source code for the example 1 of http://philipperemy.github.io/anomaly-detection/
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import print_function | |
import os | |
import numpy as np | |
from keras.layers import RepeatVector | |
from keras.layers.core import Dropout | |
from keras.layers.recurrent import LSTM | |
from keras.models import Sequential | |
from keras.models import load_model | |
np.random.seed(123) | |
def prepare_sequences(x_train, window_length, random_indices): | |
full_sequence = x_train.flatten() | |
windows = [] | |
outliers = [] | |
for window_start in range(0, len(full_sequence) - window_length + 1): | |
window_end = window_start + window_length | |
window_range = range(window_start, window_end) | |
window = list(full_sequence[window_range]) | |
contain_outlier = len(set(window_range).intersection(set(random_indices))) > 0 | |
outliers.append(contain_outlier) | |
windows.append(window) | |
return np.expand_dims(np.array(windows), axis=2), outliers | |
def get_signal(size, outliers_size=0.01): | |
sig = np.expand_dims(np.random.normal(loc=0, scale=1, size=(size, 1)), axis=1) | |
if outliers_size < 1: # percentage. | |
outliers_size = int(size * outliers_size) | |
random_indices = np.random.choice(range(size), size=outliers_size, replace=False) | |
sig[random_indices] = np.random.randint(6, 9, 1)[0] | |
return sig, random_indices | |
def tp_fn_fp_tn(total, expected, actual): | |
tp = len(set(expected).intersection(set(actual))) | |
fn = len(set(expected) - set(actual)) | |
fp = len(set(actual) - set(expected)) | |
tn = len((total - set(expected)).intersection(total - set(actual))) | |
return tp, fn, fp, tn | |
def main(): | |
window_length = 10 | |
select_only_last_state = False | |
model_file = 'model.h5' | |
hidden_dim = 16 | |
# no outliers. | |
signal_train, _ = get_signal(100000, outliers_size=0) | |
x_train, _ = prepare_sequences(signal_train, window_length, []) | |
# 1 percent are outliers. | |
signal_test, random_indices = get_signal(100000, outliers_size=0.01) | |
x_test, contain_outliers = prepare_sequences(signal_test, window_length, random_indices) | |
outlier_indices = np.where(contain_outliers)[0] | |
if os.path.isfile(model_file): | |
m = load_model(model_file) | |
else: | |
m = Sequential() | |
if select_only_last_state: | |
m.add(LSTM(hidden_dim, input_shape=(window_length, 1), return_sequences=False)) | |
m.add(RepeatVector(window_length)) | |
else: | |
m.add(LSTM(hidden_dim, input_shape=(window_length, 1), return_sequences=True)) | |
m.add(Dropout(p=0.1)) | |
m.add(LSTM(1, return_sequences=True, activation='linear')) | |
m.compile(loss='mse', optimizer='adam') | |
m.fit(x_train, x_train, batch_size=64, nb_epoch=5, validation_data=(x_test, x_test)) | |
m.save(model_file) | |
pred_x_test = m.predict(x_test) | |
mae_of_predictions = np.squeeze(np.max(np.square(pred_x_test - x_test), axis=1)) | |
mae_threshold = np.mean(mae_of_predictions) + np.std(mae_of_predictions) # can use a running mean instead. | |
actual = np.where(mae_of_predictions > mae_threshold)[0] | |
tp, fn, fp, tn = tp_fn_fp_tn(set(range(len(pred_x_test))), outlier_indices, actual) | |
precision = float(tp) / (tp + fp) | |
hit_rate = float(tp) / (tp + fn) | |
accuracy = float(tp + tn) / (tp + tn + fp + fn) | |
print('precision = {}, hit_rate = {}, accuracy = {}'.format(precision, hit_rate, accuracy)) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment