Created
December 1, 2022 22:11
-
-
Save KyanainsGate/b931fc753fe762c11245e920b47a4166 to your computer and use it in GitHub Desktop.
Pytorch3d demonstration for tensor learning
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Python: 3.9.5 | |
torch: 1.12.1+cu113 | |
pytorch3d: 0.7.1 | |
""" | |
import torch | |
from torch import nn | |
from pytorch3d.transforms.rotation_conversions import quaternion_to_matrix, matrix_to_quaternion | |
def xyzquat_to_bx3x4(bx7: torch.Tensor) -> torch.Tensor: | |
xyz, quat = bx7[:, :3], bx7[:, 3:] # [B, 3], [B, 4] | |
bx3x3 = quaternion_to_matrix(quat) | |
return torch.concat([bx3x3, xyz.unsqueeze(2)], 2) | |
def bx3x4_to_xyzquat(bx3x4: torch.Tensor) -> torch.Tensor: | |
xyz, rot = bx3x4[:, :3, 3], bx3x4[:, :3, :3] # [B, 3], [B, 3, 3] | |
quat = matrix_to_quaternion(rot) | |
return torch.concat([xyz, quat], 1) | |
class PoseTensorSuccess(nn.Module): | |
def __init__(self, x_y_z_quat: torch.Tensor): | |
super(PoseTensorSuccess, self).__init__() | |
self.pose_param = nn.Parameter(x_y_z_quat, requires_grad=True) | |
def forward(self): | |
return xyzquat_to_bx3x4(self.pose_param) | |
class PoseTensorFail(nn.Module): | |
def __init__(self, x_y_z_quat: torch.Tensor): | |
super(PoseTensorFail, self).__init__() | |
self.pose_param = nn.Parameter(x_y_z_quat, requires_grad=True) | |
self.bx3x4 = xyzquat_to_bx3x4( | |
self.pose_param) # computational graph will be duplicated to bx3x4, that's why it will fail | |
def forward(self): | |
return self.bx3x4 | |
if __name__ == '__main__': | |
init_pose = torch.tensor([[-4.6580, 0.7586, 0.1399, 0.0582, 0.7342, 0.0534, 0.6744]]) | |
tgt_pose = torch.tensor([[-4.9384, 0.7019, 0.6722, 0.0434, 0.6955, 0.0446, 0.7158]]) | |
model = PoseTensorSuccess(init_pose) | |
# model = PoseTensorFail(init_pose) | |
learning_rate = 1e-3 | |
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate) | |
loss_fn = torch.nn.MSELoss(reduction='mean') | |
torch.autograd.set_detect_anomaly(True) # Debug purpose | |
for t in range(5000): | |
with torch.set_grad_enabled(True): | |
y_pred = model() | |
loss = loss_fn(input=y_pred, target=xyzquat_to_bx3x4(tgt_pose)) | |
if t % 1000 == 0: | |
print(t, loss.item()) | |
print("y_pred\n", bx3x4_to_xyzquat(y_pred).data) | |
loss.backward() | |
optimizer.step() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment