Last active
January 22, 2019 22:48
-
-
Save L-TChen/c7aad499760a0852fb4bc39771a25b36 to your computer and use it in GitHub Desktop.
An imperative implementation of Union-Find algorithm in Haskell
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE BangPatterns #-} | |
module Union where | |
import Data.Ix | |
import Data.Array | |
import Data.Array.ST | |
import Control.Monad | |
import Control.Monad.ST | |
type Union i = Array i (i, Int) | |
type UnionM s i = STArray s i (i, Int) | |
sizeM :: (Ix i) => i -> UnionM s i -> ST s Int | |
sizeM i u = snd <$> readArray u i | |
parentM :: (Ix i) => i -> UnionM s i -> ST s i | |
parentM i u = fst <$> readArray u i | |
connectedM :: (Ix i) => i -> i -> UnionM s i -> ST s Bool | |
connectedM i j u = (==) <$> findM i u <*> findM j u | |
rebuildM :: (Ix i) => (i, i) -> UnionM s i -> ST s () | |
rebuildM bnd u = forM_ bnd (`findM` u) | |
componentsM :: (Ix i) => UnionM s i -> ST s [(i, Int)] | |
componentsM u = do | |
bnd <- getBounds u | |
rebuildM bnd u | |
xs <- getAssocs u | |
return [ (par, s) | (i, (par, s)) <- xs, s /= 0 ] | |
findM :: (Ix i, Eq i) => i -> UnionM s i -> ST s i | |
findM i u = do | |
!j <- parentM i u | |
if i == j then return j else do | |
!pi <- findM j u | |
writeArray u i (pi, 0) | |
return pi | |
createM :: (Ix i) => (i, i) -> ST s (UnionM s i) | |
createM bnd = newListArray bnd $ zip (range bnd) [1,1..] | |
unionM :: (Ix i) => i -> i -> UnionM s i -> ST s () | |
unionM i j u = do | |
!pi <- findM i u | |
!pj <- findM j u | |
if pi == pj then return () else do | |
!n <- sizeM pi u | |
!m <- sizeM pj u | |
if n < m then linkM n m pi pj u else linkM m n pj pi u | |
linkM :: (Ix i) => Int -> Int -> i -> i -> UnionM s i -> ST s () | |
linkM n m i j u = writeArray u i (j, 0) >> writeArray u j (j, n+m) | |
unionsM :: (Ix i) => [(i, i)] -> UnionM s i -> ST s () | |
unionsM reps u = forM_ reps (\(i, j) -> unionM i j u) | |
unions :: (Ix i) => (i, i) -> [(i, i)] -> Union i | |
unions bnd reps = runSTArray $ do | |
u <- createM bnd | |
unionsM reps u | |
rebuildM bnd u | |
return u | |
connected :: (Ix i) => i -> i -> Union i -> Bool | |
connected i j u = find i u == find j u | |
find :: (Ix i, Eq i) => i -> Union i -> i | |
find i = fst . (!i) | |
size :: (Ix i) => i -> Union i -> Int | |
size i u = snd (u ! find i u) | |
components :: Ix i => Union i -> [(i, Int)] | |
components u = [ (par, s) | i <- range bnd, let (par, s) = u!i, s /= 0 ] | |
where bnd = bounds u |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment