Created
December 14, 2022 22:10
-
-
Save Lanse505/9ed83c7442af679f1c641632531c0ace to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.naive_bayes import GaussianNB | |
x = beandata['MajorAxisLength'].to_numpy().reshape(-1, 1) | |
dummy = pd.get_dummies(beandata['Class'].values) | |
y = dummy['BOMBAY'].values | |
model = GaussianNB().fit(x, y) | |
y_pred = model.predict(x) | |
fig, ax = plt.subplots(figsize=(16, 8)) | |
fig.suptitle('Regression Line of GNB') | |
ax.yaxis.set_ticks((0, 1)) | |
# Using my predicted and modeled curve. | |
ax.scatter(x, y, color='Blue') | |
#ax.plot(x, y_pred, color='Red') | |
ax.set_ylim(-0.05, 1.05) | |
sns.regplot(x=x, y=y_pred, order=4, ax=ax, scatter_kws={"color": 'Blue'}, line_kws={"color": 'Red'}, ci=None) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.linear_model import LogisticRegression | |
# Import and setup our data. | |
x = beandata['MajorAxisLength'].to_numpy().reshape(-1, 1) | |
dummy = pd.get_dummies(beandata['Class'].values) | |
y = dummy['BOMBAY'].values | |
# Create out LogisticRegression Model. | |
# Uses the liblinear solver and a set random_state. | |
model = LogisticRegression(solver='liblinear', random_state=123).fit(x, y) | |
y_pred = model.predict(x) | |
# Set up the Sub-Plot Figure. | |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16,8)) | |
# Set up Figure Specs. | |
fig.suptitle('Regression Line of LogisticRegression') | |
fig.supxlabel('MajorAxisLength') | |
fig.supylabel('Found Class') | |
# Set up Sub-Plot Specs. | |
ax1.yaxis.set_ticks((0, 1)) | |
ax2.yaxis.set_ticks((0, 1)) | |
# Using my predicted and modeled curve. | |
ax1.scatter(x, y, color='Blue') | |
ax1.set_ylim(-0.05, 1.05) | |
sns.regplot(x=x, y=y_pred, order=7, ax=ax1, scatter_kws={"color": 'Blue'}, line_kws={"color": 'Red'}, ci=None) | |
# Using the built-in logistic regression from Seaborn. | |
sns.regplot(x=x, y=y, logistic=True, ax=ax2, scatter_kws={"color": 'Blue'}, line_kws={"color": 'Red'}, ci=None) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment