Created
October 15, 2021 14:35
-
-
Save Lapin0t/19ea0f88b3939699ce9ac0a78c548089 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module tele where | |
open import Function.Bundles | |
open import Level hiding (lift; zero; suc) | |
open import Data.Product | |
open import Data.Product.Properties using (Σ-≡,≡↔≡) | |
open import Data.Unit | |
open import Data.Nat hiding (_⊔_) | |
open import Data.Fin hiding (lift) | |
open import Relation.Binary.PropositionalEquality | |
data tele {ℓ} (I : Set ℓ) : Setω | |
levelₜ : ∀ {ℓ} {I : Set ℓ} → tele I → Level | |
⟦_⟧ₜ : ∀ {ℓ} {I : Set ℓ} (T : tele I) → I → Set (levelₜ T) | |
data tele I where | |
nil : tele I | |
con : ∀ {ℓ} (T : tele I) (A : ∀ i → ⟦ T ⟧ₜ i → Set ℓ) → tele I | |
levelₜ nil = 0ℓ | |
levelₜ (con {ℓ} T A) = levelₜ T ⊔ ℓ | |
⟦ nil ⟧ₜ i = ⊤ | |
⟦ con T A ⟧ₜ i = Σ (⟦ T ⟧ₜ i) (A i) | |
module _ {ℓᵢ} {I : Set ℓᵢ} where | |
-- Πₜ constructs an n-ary dependent function over a telescope | |
Πₜ : ∀ {ℓ} (T : tele I) → (∀ i → ⟦ T ⟧ₜ i → Set ℓ) → I → Set (levelₜ T ⊔ ℓ) | |
Πₜ nil F i = F i tt | |
Πₜ (con T A) F i = Πₜ T (λ i t → (a : A i t) → F i (t , a)) i | |
Σₜ : (T : tele I) → I → Set (levelₜ T) | |
Σₜ T i = aux T λ _ _ → ⊤ | |
where aux : ∀ {ℓ} (T : tele I) → (∀ i → ⟦ T ⟧ₜ i → Set ℓ) → Set (levelₜ T ⊔ ℓ) | |
aux nil F = F i tt | |
aux (con T A) F = aux T λ i t → Σ (A i t) λ a → F i (t , a) | |
uncurryₜ : ∀ {ℓ} {T : tele I} {X : ∀ i → ⟦ T ⟧ₜ i → Set ℓ} {i} → Πₜ T X i → ∀ t → X i t | |
uncurryₜ {T = nil} f tt = f | |
uncurryₜ {T = con T _} f (t , a) = uncurryₜ {T = T} f t a | |
curryₜ : ∀ {ℓ} {T : tele I} {X : ∀ i → ⟦ T ⟧ₜ i → Set ℓ} {i} → (∀ t → X i t) → Πₜ T X i | |
curryₜ {T = nil} f = f tt | |
curryₜ {T = con T _} f = curryₜ {T = T} λ t a → f (t , a) | |
_+ₜ_ : (T : tele I) → tele (Σ I ⟦ T ⟧ₜ) → tele I | |
+ₜ-proj₁ : ∀ {T U i} → ⟦ T +ₜ U ⟧ₜ i → ⟦ T ⟧ₜ i | |
+ₜ-proj₂ : ∀ {T U i} (x : ⟦ T +ₜ U ⟧ₜ i) → ⟦ U ⟧ₜ (i , +ₜ-proj₁ x) | |
T +ₜ nil = T | |
T +ₜ con U A = con (T +ₜ U) λ i x → A _ (+ₜ-proj₂ x) | |
+ₜ-proj₁ {U = nil} x = x | |
+ₜ-proj₁ {U = con U A} (x , a) = +ₜ-proj₁ x | |
+ₜ-proj₂ {U = nil} x = tt | |
+ₜ-proj₂ {U = con U A} (x , a) = +ₜ-proj₂ x , a | |
+ₜ-inj : ∀ {T U i} (x : ⟦ T ⟧ₜ i) → ⟦ U ⟧ₜ (i , x) → ⟦ T +ₜ U ⟧ₜ i | |
+ₜ-inj-proj₁ : ∀ {T U i} (x : ⟦ T ⟧ₜ i) (y : ⟦ U ⟧ₜ (i , x)) → x ≡ +ₜ-proj₁ (+ₜ-inj x y) | |
+ₜ-inj-proj₂ : ∀ {T U i} (x : ⟦ T ⟧ₜ i) (y : ⟦ U ⟧ₜ (i , x)) → subst (λ x → ⟦ U ⟧ₜ (i , x)) (+ₜ-inj-proj₁ x y) y ≡ +ₜ-proj₂ (+ₜ-inj x y) | |
+ₜ-inj {U = nil} x y = x | |
+ₜ-inj {U = con U A} {i = i} x (y , a) .proj₁ = +ₜ-inj x y | |
+ₜ-inj {U = con U A} {i = i} x (y , a) .proj₂ = | |
subst (λ where (u , v) → A (i , u) v) | |
(Σ-≡,≡↔≡ .Inverse.f (+ₜ-inj-proj₁ x y , +ₜ-inj-proj₂ x y)) | |
a | |
+ₜ-inj-proj₁ {U = nil} x y = refl | |
+ₜ-inj-proj₁ {U = con U A} x (y , a) = +ₜ-inj-proj₁ x y | |
+ₜ-inj-proj₂ {U = nil} x tt = refl | |
+ₜ-inj-proj₂ {U = con U A} x (y , a) = {!!} -- Σ-≡,≡↔≡ .Inverse.f ({!+ₜ-inj-proj₂ x y!} , {!!}) | |
{- | |
record tele-ext : Setω where | |
constructor _,_ | |
field | |
{ext-ℓ} : Level | |
pre : tele | |
ext : ⟦ pre ⟧ₜ → Set ext-ℓ | |
extₜ : tele | |
extₜ = con pre ext | |
open tele-ext public | |
length : tele → ℕ | |
length nil = zero | |
length (con T A) = suc (length T) | |
prefix : (T : tele) → Fin (length T) → tele-ext | |
prefix (con T A) zero = T , A | |
prefix (con T A) (suc i) = prefix T i | |
suffix : (T : tele) (i : Fin (length T)) → ⟦ extₜ (prefix T i) ⟧ₜ → tele | |
suffix-ext : ∀ {T i} (x : ⟦ extₜ (prefix T i) ⟧ₜ) → ⟦ suffix T i x ⟧ₜ → ⟦ T ⟧ₜ | |
suffix (con T A) zero x = nil | |
suffix (con T A) (suc i) x = con (suffix T i x) λ s → A (suffix-ext x s) | |
suffix-ext {T = con T A} {i = zero} p s = p | |
suffix-ext {T = con T A} {i = suc i} p (s , a) = suffix-ext p s , a | |
_+ₜ_ : (T : tele) → (⟦ T ⟧ₜ → tele) → tele | |
+ₜ-inj₁ : ∀ {T U} → ⟦ T +ₜ U ⟧ₜ → ⟦ T ⟧ₜ | |
nil +ₜ U = U tt | |
con T A +ₜ U = {!!} | |
where aux : ∀ {ℓ} (T : tele) (X : ⟦ T ⟧ₜ → Set ℓ) (U : Σ ⟦ T ⟧ₜ X → tele) → tele | |
aux nil X U = {!!} | |
aux (con T A) X U = {!<!} | |
+ₜ-inj₁ = {!!} | |
-} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment