I hereby claim:
- I am lapin0t on github.
- I am lapinot (https://keybase.io/lapinot) on keybase.
- I have a public key ASBhhz1PHZ0acYsVcWteheVp7jFraGZafgc3dgsz0t2uOwo
To claim this, I am signing this object:
-- Source: Conor McBride | |
-- https://personal.cis.strath.ac.uk/conor.mcbride/fooling/Jigger.agda | |
module Jigger where | |
data Nat : Set where | |
zero : Nat | |
suc : Nat -> Nat | |
_+_ : Nat -> Nat -> Nat | |
zero + n = n |
module test where | |
data ty : Set where | |
unit : ty | |
_⇒_ : ty → ty → ty | |
data env : Set where | |
∅ : env | |
_▸_ : env → ty → env |
module tele where | |
open import Function.Bundles | |
open import Level hiding (lift; zero; suc) | |
open import Data.Product | |
open import Data.Product.Properties using (Σ-≡,≡↔≡) | |
open import Data.Unit | |
open import Data.Nat hiding (_⊔_) | |
open import Data.Fin hiding (lift) |
// ==UserScript== | |
// @name New script - youtube.com | |
// @namespace Violentmonkey Scripts | |
// @match https://www.youtube.com/ | |
// @grant GM_notification | |
// @grant GM_xmlhttpRequest | |
// @grant GM_getValue | |
// @grant GM_setValue | |
// @version 1.0 | |
// @author - |
module simple where | |
open import Agda.Builtin.Size public | |
_∘_ : ∀ {i j k} {A : Set i} {B : A → Set j} {C : ∀ {x} → B x → Set k} | |
(f : ∀ {x} (y : B x) → C y) (g : (x : A) → B x) (x : A) → C (g x) | |
f ∘ g = λ x → f (g x) | |
data _≡_ {i} {X : Set i} (x : X) : {Y : Set i} → Y → Set where | |
refl : x ≡ x |
related ideas: | |
- the code should only query a config which would has been populated by | |
command-line args or by some config file | |
- sync the config and the CLI so that everything can be set from CLI or in | |
config file with somewhat the same names | |
--- | |
$ whipper --help |
(lambda r,e:e(r(r('(λip·(λr,e,it,t,f·e((λc·e(print(sum(1 for(a,b)in c if x+y>a ' | |
'and a+b>x))for(x,y)in(f()for _ in r(m))))([t(f())[2:]for _ in r(n)])for(n,m)in' | |
' it.takewhile(λx·x!=(0,0),(t(f())for _ in it.repeat(None)))))(range,λi·ip("fun' | |
'ctools").reduce(λx,y·None,i),ip("itertools"),tuple,λ·map(int,input().split()))' | |
')(__import__)','λ','lambda '),'·',':')))(str.replace,eval) |
I hereby claim:
To claim this, I am signing this object:
from math import ceil as ceil_, floor as floor_, log | |
from matplotlib import pyplot as plt | |
import numpy as np | |
ceil = lambda n: int(ceil_(n)) | |
floor = lambda n: int(floor_(n)) | |
immeuble = lambda i: lambda j: j >= i | |
def etage_fatal(k, n, fatal): |
(lambda x: lambda y: y)(__import__('sys').setrecursionlimit(2**31-1))((lambda | |
z: (lambda s: (lambda h: (lambda j: (lambda o: (lambda d: (lambda t: (lambda | |
e: (lambda g: (lambda k: (lambda l: (lambda m: (lambda n: (lambda q: (lambda | |
r: (lambda l: (lambda v: (lambda a: (lambda p: print(a(e(p)), a(g(p)))))(lambda | |
x: e(x)(lambda x: x+1)(g(x)(lambda x: x-1)(0)))(v(lambda x: lambda y: (lambda | |
w: v(lambda p: lambda a: v((lambda u: u(u))(lambda u: (lambda f: lambda i: | |
lambda e: lambda g: (q(w)(i))(lambda x: j)(h)(lambda _: k(e)(g))(lambda _: v( | |
lambda j: lambda k: (lambda a: lambda b: lambda c: (o(d(r(a))(t(d(r(b))(r(c)) | |
)))(t(o(r(a))(o(r(b))(r(c))))))(lambda _: f(s(i))(j)(k))(lambda _: f(s(i))(e) | |
(g)))(m(n(m(p)(x))(m(k)(y)))(n(m(a)(y))(m(j)(x))))(m(n(m(e)(x))(m(k)(y)))(n(m |