Created
February 24, 2017 19:03
-
-
Save Laurae2/4cb8c569a6e1782dba49e8621b6ef80b to your computer and use it in GitHub Desktop.
Polynomial Regression demo using R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Setting up random matrix | |
set.seed(11111) | |
data <- data.frame(a = rnorm(n = 15) * 5, | |
b = rnorm(n = 15) * 3 + 1, | |
c = rnorm(n = 15) * 2 + 2) | |
# Setting up the (perfect) linear relationship | |
preds <- 2 + (data[, 1] * 2) + (data[, 2] * 3) + (data[, 3] * 4) + (data[, 3] ^ 2) + (data[, 1] * data[, 2]) | |
# Setting up polynomial features | |
columns <- ncol(data) | |
for (i in 1:columns) { | |
data[, paste0(colnames(data)[i], "X", colnames(data)[i])] <- data[, i] * data[, i] | |
for (j in i:columns) { | |
data[, paste0(colnames(data)[i], "X", colnames(data)[j])] <- data[, i] * data[, j] | |
} | |
} | |
data <- as.matrix(cbind(Intercept = 1, data)) | |
# Plotting data to understand what we have | |
PerformanceAnalytics::chart.Correlation(data.frame(data, preds = preds)) | |
# If you do not have PerformanceAnalytics package, use this instead | |
# plot(data.frame(data, preds = preds)) | |
# Getting linear regression coefficients | |
coefficients <- solve(t(data) %*% data, tol = 1e-30) %*% t(data) %*% preds | |
# Predicting on data | |
data %*% coefficients | |
# Checking data vs real values | |
plot(x = 1:nrow(data), y = (data %*% coefficients) - preds, xlab = "Obsevation number", ylab = "Residuals", main = "Residuals of predictions") | |
summary(lm(preds ~ ., data = data.frame(data[, 2:10], preds))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment