Last active
December 24, 2018 14:38
-
-
Save Laurae2/7dfe916b0941fb5d7d4aeb4f876b0e9a to your computer and use it in GitHub Desktop.
xgboost CPU vs GPU
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(xgboost) | |
set.seed(1) | |
N <- 10000000 | |
p <- 100 | |
pp <- 25 | |
X <- matrix(runif(N * p), ncol = p) | |
betas <- 2 * runif(pp) - 1 | |
sel <- sort(sample(p, pp)) | |
m <- X[, sel] %*% betas - 1 + rnorm(N) | |
y <- rbinom(N, 1, plogis(m)) | |
tr <- sample.int(N, N * 0.90) | |
trainer <- function(n_cpus, n_gpus, n_iterations, n_depth) { | |
if (n_gpus == 0) { | |
pt <- proc.time() | |
set.seed(11111) | |
model <- xgb.train(list(objective = "binary:logistic", eval_metric = "logloss", nthread = n_cpus, eta = 0.10, max_depth = n_depth, max_bin = 64, tree_method = "hist"), | |
dtrain, watchlist = wl, nrounds = n_iterations, verbose = 0) | |
my_time <- proc.time() - pt | |
} else { | |
pt <- proc.time() | |
set.seed(11111) | |
model <- xgb.train(list(objective = "gpu:binary:logistic", eval_metric = "logloss", nthread = n_cpus, eta = 0.10, max_depth = n_depth, max_bin = 64, tree_method = "gpu_hist", n_gpus = n_gpus), | |
dtrain, watchlist = wl, nrounds = n_iterations, verbose = 0) | |
my_time <- proc.time() - pt | |
} | |
rm(model) | |
gc(verbose = FALSE) | |
return(my_time) | |
} | |
dtrain <- xgb.DMatrix(X[tr,], label = y[tr]) | |
dtest <- xgb.DMatrix(X[-tr,], label = y[-tr]) | |
wl <- list(test = dtest) | |
library(data.table) | |
log_file <- "/home/laurae/Documents/R/xgboost_GPU_test/log.csv" | |
data_file <- "/home/laurae/Documents/R/xgboost_GPU_test/data.csv" | |
n_cpus <- c(1, 2, 4, 6, 9, 17, 18, 19, 35, 36, 37, 70, 71, 72) | |
n_cpus_rep <- 2 | |
n_gpus <- c(1, 2, 3, 4) | |
n_gpus_rep <- 4 | |
n_iters <- 500 | |
n_depths <- 2:12 | |
data <- rbindlist(list(data.table(Workload = "GPU", CPU = rep(rev(n_gpus), each = length(n_depths)), GPU = rep(rev(n_gpus), each = length(n_depths)), Depth = rep(rev(n_depths), length(n_gpus)), Repeats = n_gpus_rep, Speed = 0), | |
data.table(Workload = "CPU", CPU = rep(rev(n_cpus), each = length(n_depths)), GPU = 0, Depth = rep(rev(n_depths), length(n_cpus)), Repeats = n_cpus_rep, Speed = 0))) | |
colnames(data) <- c("Workload", "CPU Threads", "GPU Count", "Depth", "Repeats", "Speed") | |
sink(log_file, append = FALSE) | |
for (k in seq_len(nrow(data))) { | |
cat(k, "\n", sep = "", file = log_file, append = TRUE) | |
if (k > 1) { | |
if ((data$`GPU Count`[k - 1] - data$`GPU Count`[k]) != 0) { | |
rm(dtrain, dtest, wl) | |
gc(verbose = FALSE) | |
dtrain <- xgb.DMatrix(X[tr,], label = y[tr]) | |
dtest <- xgb.DMatrix(X[-tr,], label = y[-tr]) | |
wl <- list(test = dtest) | |
gc(verbose = FALSE) | |
} | |
} | |
zz <- 0 | |
z <- 0 | |
for (j in seq_len(data$Repeats[k])) { | |
zz <- unname(trainer(data$`CPU Threads`[k], data$`GPU Count`[k], n_iters, data$Depth[k]))[3] | |
z <- z + zz | |
cat("[", sprintf(paste0("%0", floor(log10(max(data$Repeats)) + 1), "d"), j), " / ", data$Repeats[k], "] ", sprintf("%02d", data$`CPU Threads`[k]), " CPUs / ", data$`GPU Count`[k], " GPUs / ", sprintf("%02d", data$Depth[k]), " Depth: ", sprintf("%08.03f", zz), "s\n", sep = "", file = log_file, append = TRUE) | |
gc(verbose = FALSE) | |
} | |
data[k, Speed := z / j] | |
cat("[Done] ", sprintf("%02d", data$`CPU Threads`[k]), " CPUs / ", data$`GPU Count`[k], " GPUs / ", sprintf("%02d", data$Depth[k]), " Depth: ", sprintf("%08.03f", data$Speed[k]), "s\n\n", sep = "", file = log_file, append = TRUE) | |
} | |
sink() | |
fwrite(data, data_file) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment