Created
February 24, 2017 14:51
-
-
Save Laurae2/fdbebe477184adba8e3c0a0db1dc2911 to your computer and use it in GitHub Desktop.
Gradient Descent for linear regression demo.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Generate random values | |
set.seed(11111) | |
x <- rnorm(n = 50) | |
y <- 10 * x + rnorm(n = 50) | |
# Add intercept | |
x <- cbind(1,x) | |
# Assume random null parameters | |
param <- c(0,0) | |
# Store count of observations | |
m <- length(y) | |
# Calculate Mean Squared Error cost | |
cost <- function(x, y, param) {mean(((x %*% param)- y) ^ 2)} | |
grad <- function(x, y, param) { | |
gradient <- rep(0, length(param)) | |
pre_sum <- ((x %*% param) - y) | |
for (i in 1:length(param)) { | |
# Squared Error = (x - y) ^ 2 | |
# Squared Error Gradient: 2 * (x - y) | |
gradient[i] <- 2 * mean(pre_sum * x[, i]) | |
} | |
return(gradient) | |
} | |
# Set learning rate (eta) | |
eta <- 0.20 | |
# Set number of boosting iterations | |
iters <- 20 | |
# Perform boosting with real-time plotting | |
plot(x[, ncol(x)], y, col = "blue", pch = 20, xlab = "x", ylab = "y") | |
for(i in 1:iters) { | |
abline(param[1], param[2], col = rgb(0.8, 0.0, 0.2, alpha = 0.25)) | |
#cat("[", sprintf("%02d", i), "] Cost: ", sprintf("%10.07f", cost(x, y, param)), "\n", sep = "") | |
cat("[", sprintf("%02d", i), "] Cost: ", sprintf("%10.07f", cost(x, y, param)), ", params = ", paste(sprintf("%08.06f", param), collapse = ", "), "\n", sep = "") | |
param <- param - eta * grad(x, y, param) | |
} | |
abline(param[1], param[2], col = "blue") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment