Created
July 19, 2013 16:38
-
-
Save Leask/6040554 to your computer and use it in GitHub Desktop.
Suffix tree creation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// | |
// Suffix tree creation | |
// | |
// Mark Nelson, updated December, 2006 | |
// | |
// This code has been tested with Borland C++ and | |
// Microsoft Visual C++. | |
// | |
// This program asks you for a line of input, then | |
// creates the suffix tree corresponding to the given | |
// text. Additional code is provided to validate the | |
// resulting tree after creation. | |
// | |
#include <iostream> | |
#include <iomanip> | |
#include <cstdlib> | |
#include <string.h> | |
#include <cassert> | |
#include <string> | |
using std::cout; | |
using std::cin; | |
using std::cerr; | |
using std::setw; | |
using std::flush; | |
using std::endl; | |
// | |
// When a new tree is added to the table, we step | |
// through all the currently defined suffixes from | |
// the active point to the end point. This structure | |
// defines a Suffix by its final character. | |
// In the canonical representation, we define that last | |
// character by starting at a node in the tree, and | |
// following a string of characters, represented by | |
// first_char_index and last_char_index. The two indices | |
// point into the input string. Note that if a suffix | |
// ends at a node, there are no additional characters | |
// needed to characterize its last character position. | |
// When this is the case, we say the node is Explicit, | |
// and set first_char_index > last_char_index to flag | |
// that. | |
// | |
class Suffix { | |
public : | |
int origin_node; | |
int first_char_index; | |
int last_char_index; | |
Suffix( int node, int start, int stop ) | |
: origin_node( node ), | |
first_char_index( start ), | |
last_char_index( stop ){}; | |
int Explicit(){ return first_char_index > last_char_index; } | |
int Implicit(){ return last_char_index >= first_char_index; } | |
void Canonize(); | |
}; | |
// | |
// The suffix tree is made up of edges connecting nodes. | |
// Each edge represents a string of characters starting | |
// at first_char_index and ending at last_char_index. | |
// Edges can be inserted and removed from a hash table, | |
// based on the Hash() function defined here. The hash | |
// table indicates an unused slot by setting the | |
// start_node value to -1. | |
// | |
class Edge { | |
public : | |
int first_char_index; | |
int last_char_index; | |
int end_node; | |
int start_node; | |
void Insert(); | |
void Remove(); | |
Edge(); | |
Edge( int init_first_char_index, | |
int init_last_char_index, | |
int parent_node ); | |
int SplitEdge( Suffix &s ); | |
static Edge Find( int node, int c ); | |
static int Hash( int node, int c ); | |
}; | |
// | |
// The only information contained in a node is the | |
// suffix link. Each suffix in the tree that ends | |
// at a particular node can find the next smaller suffix | |
// by following the suffix_node link to a new node. Nodes | |
// are stored in a simple array. | |
// | |
class Node { | |
public : | |
int suffix_node; | |
Node() { suffix_node = -1; } | |
static int Count; | |
}; | |
// | |
// The maximum input string length this program | |
// will handle is defined here. A suffix tree | |
// can have as many as 2N edges/nodes. The edges | |
// are stored in a hash table, whose size is also | |
// defined here. | |
// | |
const int MAX_LENGTH = 1000; | |
const int HASH_TABLE_SIZE = 2179; //A prime roughly 10% larger | |
// | |
// This is the hash table where all the currently | |
// defined edges are stored. You can dump out | |
// all the currently defined edges by iterating | |
// through the table and finding edges whose start_node | |
// is not -1. | |
// | |
Edge Edges[ HASH_TABLE_SIZE ]; | |
// | |
// The array of defined nodes. The count is 1 at the | |
// start because the initial tree has the root node | |
// defined, with no children. | |
// | |
int Node::Count = 1; | |
Node Nodes[ MAX_LENGTH * 2 ]; | |
// | |
// The input buffer and character count. Please note that N | |
// is the length of the input string -1, which means it | |
// denotes the maximum index in the input buffer. | |
// | |
char T[ MAX_LENGTH ]; | |
int N; | |
// | |
// Necessary forward references | |
// | |
void validate(); | |
int walk_tree( int start_node, int last_char_so_far ); | |
// | |
// The default ctor for Edge just sets start_node | |
// to the invalid value. This is done to guarantee | |
// that the hash table is initially filled with unused | |
// edges. | |
// | |
Edge::Edge() | |
{ | |
start_node = -1; | |
} | |
// | |
// I create new edges in the program while walking up | |
// the set of suffixes from the active point to the | |
// endpoint. Each time I create a new edge, I also | |
// add a new node for its end point. The node entry | |
// is already present in the Nodes[] array, and its | |
// suffix node is set to -1 by the default Node() ctor, | |
// so I don't have to do anything with it at this point. | |
// | |
Edge::Edge( int init_first, int init_last, int parent_node ) | |
{ | |
first_char_index = init_first; | |
last_char_index = init_last; | |
start_node = parent_node; | |
end_node = Node::Count++; | |
} | |
// | |
// Edges are inserted into the hash table using this hashing | |
// function. | |
// | |
int Edge::Hash( int node, int c ) | |
{ | |
return ( ( node << 8 ) + c ) % HASH_TABLE_SIZE; | |
} | |
// | |
// A given edge gets a copy of itself inserted into the table | |
// with this function. It uses a linear probe technique, which | |
// means in the case of a collision, we just step forward through | |
// the table until we find the first unused slot. | |
// | |
void Edge::Insert() | |
{ | |
int i = Hash( start_node, T[ first_char_index ] ); | |
while ( Edges[ i ].start_node != -1 ) | |
i = ++i % HASH_TABLE_SIZE; | |
Edges[ i ] = *this; | |
} | |
// | |
// Removing an edge from the hash table is a little more tricky. | |
// You have to worry about creating a gap in the table that will | |
// make it impossible to find other entries that have been inserted | |
// using a probe. Working around this means that after setting | |
// an edge to be unused, we have to walk ahead in the table, | |
// filling in gaps until all the elements can be found. | |
// | |
// Knuth, Sorting and Searching, Algorithm R, p. 527 | |
// | |
void Edge::Remove() | |
{ | |
int i = Hash( start_node, T[ first_char_index ] ); | |
while ( Edges[ i ].start_node != start_node || | |
Edges[ i ].first_char_index != first_char_index ) | |
i = ++i % HASH_TABLE_SIZE; | |
for ( ; ; ) { | |
Edges[ i ].start_node = -1; | |
int j = i; | |
for ( ; ; ) { | |
i = ++i % HASH_TABLE_SIZE; | |
if ( Edges[ i ].start_node == -1 ) | |
return; | |
int r = Hash( Edges[ i ].start_node, T[ Edges[ i ].first_char_index ] ); | |
if ( i >= r && r > j ) | |
continue; | |
if ( r > j && j > i ) | |
continue; | |
if ( j > i && i >= r ) | |
continue; | |
break; | |
} | |
Edges[ j ] = Edges[ i ]; | |
} | |
} | |
// | |
// The whole reason for storing edges in a hash table is that it | |
// makes this function fairly efficient. When I want to find a | |
// particular edge leading out of a particular node, I call this | |
// function. It locates the edge in the hash table, and returns | |
// a copy of it. If the edge isn't found, the edge that is returned | |
// to the caller will have start_node set to -1, which is the value | |
// used in the hash table to flag an unused entry. | |
// | |
Edge Edge::Find( int node, int c ) | |
{ | |
int i = Hash( node, c ); | |
for ( ; ; ) { | |
if ( Edges[ i ].start_node == node ) | |
if ( c == T[ Edges[ i ].first_char_index ] ) | |
return Edges[ i ]; | |
if ( Edges[ i ].start_node == -1 ) | |
return Edges[ i ]; | |
i = ++i % HASH_TABLE_SIZE; | |
} | |
} | |
// | |
// When a suffix ends on an implicit node, adding a new character | |
// means I have to split an existing edge. This function is called | |
// to split an edge at the point defined by the Suffix argument. | |
// The existing edge loses its parent, as well as some of its leading | |
// characters. The newly created edge descends from the original | |
// parent, and now has the existing edge as a child. | |
// | |
// Since the existing edge is getting a new parent and starting | |
// character, its hash table entry will no longer be valid. That's | |
// why it gets removed at the start of the function. After the parent | |
// and start char have been recalculated, it is re-inserted. | |
// | |
// The number of characters stolen from the original node and given | |
// to the new node is equal to the number of characters in the suffix | |
// argument, which is last - first + 1; | |
// | |
int Edge::SplitEdge( Suffix &s ) | |
{ | |
Remove(); | |
Edge *new_edge = | |
new Edge( first_char_index, | |
first_char_index + s.last_char_index - s.first_char_index, | |
s.origin_node ); | |
new_edge->Insert(); | |
Nodes[ new_edge->end_node ].suffix_node = s.origin_node; | |
first_char_index += s.last_char_index - s.first_char_index + 1; | |
start_node = new_edge->end_node; | |
Insert(); | |
return new_edge->end_node; | |
} | |
// | |
// This routine prints out the contents of the suffix tree | |
// at the end of the program by walking through the | |
// hash table and printing out all used edges. It | |
// would be really great if I had some code that will | |
// print out the tree in a graphical fashion, but I don't! | |
// | |
void dump_edges( int current_n ) | |
{ | |
cout << " Start End Suf First Last String\n"; | |
for ( int j = 0 ; j < HASH_TABLE_SIZE ; j++ ) { | |
Edge *s = Edges + j; | |
if ( s->start_node == -1 ) | |
continue; | |
cout << setw( 5 ) << s->start_node << " " | |
<< setw( 5 ) << s->end_node << " " | |
<< setw( 3 ) << Nodes[ s->end_node ].suffix_node << " " | |
<< setw( 5 ) << s->first_char_index << " " | |
<< setw( 6 ) << s->last_char_index << " "; | |
int top; | |
if ( current_n > s->last_char_index ) | |
top = s->last_char_index; | |
else | |
top = current_n; | |
for ( int l = s->first_char_index ; | |
l <= top; | |
l++ ) | |
cout << T[ l ]; | |
cout << "\n"; | |
} | |
} | |
// | |
// A suffix in the tree is denoted by a Suffix structure | |
// that denotes its last character. The canonical | |
// representation of a suffix for this algorithm requires | |
// that the origin_node by the closest node to the end | |
// of the tree. To force this to be true, we have to | |
// slide down every edge in our current path until we | |
// reach the final node. | |
void Suffix::Canonize() | |
{ | |
if ( !Explicit() ) { | |
Edge edge = Edge::Find( origin_node, T[ first_char_index ] ); | |
int edge_span = edge.last_char_index - edge.first_char_index; | |
while ( edge_span <= ( last_char_index - first_char_index ) ) { | |
first_char_index = first_char_index + edge_span + 1; | |
origin_node = edge.end_node; | |
if ( first_char_index <= last_char_index ) { | |
edge = Edge::Find( edge.end_node, T[ first_char_index ] ); | |
edge_span = edge.last_char_index - edge.first_char_index; | |
}; | |
} | |
} | |
} | |
// | |
// This routine constitutes the heart of the algorithm. | |
// It is called repetitively, once for each of the prefixes | |
// of the input string. The prefix in question is denoted | |
// by the index of its last character. | |
// | |
// At each prefix, we start at the active point, and add | |
// a new edge denoting the new last character, until we | |
// reach a point where the new edge is not needed due to | |
// the presence of an existing edge starting with the new | |
// last character. This point is the end point. | |
// | |
// Luckily for use, the end point just happens to be the | |
// active point for the next pass through the tree. All | |
// we have to do is update it's last_char_index to indicate | |
// that it has grown by a single character, and then this | |
// routine can do all its work one more time. | |
// | |
void AddPrefix( Suffix &active, int last_char_index ) | |
{ | |
int parent_node; | |
int last_parent_node = -1; | |
for ( ; ; ) { | |
Edge edge; | |
parent_node = active.origin_node; | |
// | |
// Step 1 is to try and find a matching edge for the given node. | |
// If a matching edge exists, we are done adding edges, so we break | |
// out of this big loop. | |
// | |
if ( active.Explicit() ) { | |
edge = Edge::Find( active.origin_node, T[ last_char_index ] ); | |
if ( edge.start_node != -1 ) | |
break; | |
} else { //implicit node, a little more complicated | |
edge = Edge::Find( active.origin_node, T[ active.first_char_index ] ); | |
int span = active.last_char_index - active.first_char_index; | |
if ( T[ edge.first_char_index + span + 1 ] == T[ last_char_index ] ) | |
break; | |
parent_node = edge.SplitEdge( active ); | |
} | |
// | |
// We didn't find a matching edge, so we create a new one, add | |
// it to the tree at the parent node position, and insert it | |
// into the hash table. When we create a new node, it also | |
// means we need to create a suffix link to the new node from | |
// the last node we visited. | |
// | |
Edge *new_edge = new Edge( last_char_index, N, parent_node ); | |
new_edge->Insert(); | |
if ( last_parent_node > 0 ) | |
Nodes[ last_parent_node ].suffix_node = parent_node; | |
last_parent_node = parent_node; | |
// | |
// This final step is where we move to the next smaller suffix | |
// | |
if ( active.origin_node == 0 ) | |
active.first_char_index++; | |
else | |
active.origin_node = Nodes[ active.origin_node ].suffix_node; | |
active.Canonize(); | |
} | |
if ( last_parent_node > 0 ) | |
Nodes[ last_parent_node ].suffix_node = parent_node; | |
active.last_char_index++; //Now the endpoint is the next active point | |
active.Canonize(); | |
}; | |
int main() | |
{ | |
cout << "Normally, suffix trees require that the last\n" | |
<< "character in the input string be unique. If\n" | |
<< "you don't do this, your tree will contain\n" | |
<< "suffixes that don't end in leaf nodes. This is\n" | |
<< "often a useful requirement. You can build a tree\n" | |
<< "in this program without meeting this requirement,\n" | |
<< "but the validation code will flag it as being an\n" | |
<< "invalid tree\n\n"; | |
cout << "Enter string: " << flush; | |
cin.getline( T, MAX_LENGTH - 1 ); | |
N = strlen( T ) - 1; | |
// | |
// The active point is the first non-leaf suffix in the | |
// tree. We start by setting this to be the empty string | |
// at node 0. The AddPrefix() function will update this | |
// value after every new prefix is added. | |
// | |
Suffix active( 0, 0, -1 ); // The initial active prefix | |
for ( int i = 0 ; i <= N ; i++ ) | |
AddPrefix( active, i ); | |
// | |
// Once all N prefixes have been added, the resulting table | |
// of edges is printed out, and a validation step is | |
// optionally performed. | |
// | |
dump_edges( N ); | |
cout << "Would you like to validate the tree?" | |
<< flush; | |
std::string s; | |
getline( cin, s ); | |
if ( s.size() > 0 && s[ 0 ] == 'Y' || s[ 0 ] == 'y' ) | |
validate(); | |
system("pause"); | |
return 1; | |
}; | |
// | |
// The validation code consists of two routines. All it does | |
// is traverse the entire tree. walk_tree() calls itself | |
// recursively, building suffix strings up as it goes. When | |
// walk_tree() reaches a leaf node, it checks to see if the | |
// suffix derived from the tree matches the suffix starting | |
// at the same point in the input text. If so, it tags that | |
// suffix as correct in the GoodSuffixes[] array. When the tree | |
// has been traversed, every entry in the GoodSuffixes array should | |
// have a value of 1. | |
// | |
// In addition, the BranchCount[] array is updated while the tree is | |
// walked as well. Every count in the array has the | |
// number of child edges emanating from that node. If the node | |
// is a leaf node, the value is set to -1. When the routine | |
// finishes, every node should be a branch or a leaf. The number | |
// of leaf nodes should match the number of suffixes (the length) | |
// of the input string. The total number of branches from all | |
// nodes should match the node count. | |
// | |
char CurrentString[ MAX_LENGTH ]; | |
char GoodSuffixes[ MAX_LENGTH ]; | |
char BranchCount[ MAX_LENGTH * 2 ] = { 0 }; | |
void validate() | |
{ | |
for ( int i = 0 ; i < N ; i++ ) | |
GoodSuffixes[ i ] = 0; | |
walk_tree( 0, 0 ); | |
int error = 0; | |
for ( int i = 0 ; i < N ; i++ ) | |
if ( GoodSuffixes[ i ] != 1 ) { | |
cout << "Suffix " << i << " count wrong!\n"; | |
error++; | |
} | |
if ( error == 0 ) | |
cout << "All Suffixes present!\n"; | |
int leaf_count = 0; | |
int branch_count = 0; | |
for ( int i = 0 ; i < Node::Count ; i++ ) { | |
if ( BranchCount[ i ] == 0 ) | |
cout << "Logic error on node " | |
<< i | |
<< ", not a leaf or internal node!\n"; | |
else if ( BranchCount[ i ] == -1 ) | |
leaf_count++; | |
else | |
branch_count += BranchCount[ i ]; | |
} | |
cout << "Leaf count : " | |
<< leaf_count | |
<< ( leaf_count == ( N + 1 ) ? " OK" : " Error!" ) | |
<< "\n"; | |
cout << "Branch count : " | |
<< branch_count | |
<< ( branch_count == (Node::Count - 1) ? " OK" : " Error!" ) | |
<< endl; | |
} | |
int walk_tree( int start_node, int last_char_so_far ) | |
{ | |
int edges = 0; | |
for ( int i = 0 ; i < 256 ; i++ ) { | |
Edge edge = Edge::Find( start_node, i ); | |
if ( edge.start_node != -1 ) { | |
if ( BranchCount[ edge.start_node ] < 0 ) | |
cerr << "Logic error on node " | |
<< edge.start_node | |
<< '\n'; | |
BranchCount[ edge.start_node ]++; | |
edges++; | |
int l = last_char_so_far; | |
for ( int j = edge.first_char_index ; j <= edge.last_char_index ; j++ ) | |
CurrentString[ l++ ] = T[ j ]; | |
CurrentString[ l ] = '\0'; | |
if ( walk_tree( edge.end_node, l ) ) { | |
if ( BranchCount[ edge.end_node ] > 0 ) | |
cerr << "Logic error on node " | |
<< edge.end_node | |
<< "\n"; | |
BranchCount[ edge.end_node ]--; | |
} | |
} | |
} | |
// | |
// If this node didn't have any child edges, it means we | |
// are at a leaf node, and can check on this suffix. We | |
// check to see if it matches the input string, then tick | |
// off it's entry in the GoodSuffixes list. | |
// | |
if ( edges == 0 ) { | |
cout << "Suffix : "; | |
for ( int m = 0 ; m < last_char_so_far ; m++ ) | |
cout << CurrentString[ m ]; | |
cout << "\n"; | |
GoodSuffixes[ strlen( CurrentString ) - 1 ]++; | |
cout << "comparing: " << ( T + N - strlen( CurrentString ) + 1 ) | |
<< " to " << CurrentString << endl; | |
if ( strcmp(T + N - strlen(CurrentString) + 1, CurrentString ) != 0 ) | |
cout << "Comparison failure!\n"; | |
return 1; | |
} else | |
return 0; | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment