Last active
August 28, 2024 15:32
-
-
Save Leommm-byte/6b331a1e9bd53271210b26543a7065d6 to your computer and use it in GitHub Desktop.
This script provides a function to convert the key format of LoRA weights from Xlabs to the format used by Hugging Face's Diffusers library. The conversion is necessary for utilizing Xlabs LoRA weights in models compatible with the Diffusers ecosystem. The script reads a LoRA weight file in safetensors format, converts the keys using predefined …
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# This script provides a function to convert the key format of LoRA weights from Xlabs to the format used by | |
# Hugging Face's Diffusers library. The conversion is necessary for utilizing Xlabs LoRA weights in models | |
# compatible with the Diffusers ecosystem. The script reads a LoRA weight file in safetensors format, | |
# converts the keys using predefined rules, and outputs the converted state dictionary. | |
import re | |
import torch | |
import safetensors.torch | |
from diffusers.loaders.single_file_utils import swap_scale_shift | |
def convert_lora_keys(old_state_dict): | |
""" | |
Converts LoRA keys from Xlabs format to Hugging Face Diffusers format. | |
Args: | |
old_state_dict (dict): The original state dictionary with Xlabs keys. | |
Returns: | |
dict: A new state dictionary with converted keys suitable for Diffusers. | |
""" | |
new_state_dict = {} | |
for old_key, value in old_state_dict.items(): | |
# Handle double_blocks | |
if old_key.startswith('double_blocks'): | |
block_num = re.search(r'double_blocks\.(\d+)', old_key).group(1) | |
new_key = f'transformer.transformer_blocks.{block_num}' | |
if 'processor.proj_lora1' in old_key: | |
new_key += '.attn.to_out.0' | |
elif 'processor.proj_lora2' in old_key: | |
new_key += '.attn.to_add_out' | |
elif 'processor.qkv_lora1' in old_key: | |
new_key += '.attn' | |
if 'down' in old_key: | |
for proj in ['add_q_proj', 'add_k_proj', 'add_v_proj']: | |
proj_key = f'{new_key}.{proj}.lora_A.weight' | |
new_state_dict[proj_key] = value | |
elif 'up' in old_key: | |
for proj in ['add_q_proj', 'add_k_proj', 'add_v_proj']: | |
proj_key = f'{new_key}.{proj}.lora_B.weight' | |
new_state_dict[proj_key] = value | |
continue | |
elif 'processor.qkv_lora2' in old_key: | |
new_key += '.attn' | |
if 'down' in old_key: | |
for proj in ['to_q', 'to_k', 'to_v']: | |
proj_key = f'{new_key}.{proj}.lora_A.weight' | |
new_state_dict[proj_key] = value | |
elif 'up' in old_key: | |
for proj in ['to_q', 'to_k', 'to_v']: | |
proj_key = f'{new_key}.{proj}.lora_B.weight' | |
new_state_dict[proj_key] = value | |
continue | |
if 'down' in old_key: | |
new_key += '.lora_A.weight' | |
elif 'up' in old_key: | |
new_key += '.lora_B.weight' | |
# Handle single_blocks | |
elif old_key.startswith('single_blocks'): | |
block_num = re.search(r'single_blocks\.(\d+)', old_key).group(1) | |
new_key = f'transformer.single_transformer_blocks.{block_num}' | |
if 'proj_lora1' in old_key or 'proj_lora2' in old_key: | |
new_key += '.proj_out' | |
elif 'qkv_lora1' in old_key or 'qkv_lora2' in old_key: | |
new_key += '.norm.linear' | |
if 'down' in old_key: | |
new_key += '.lora_A.weight' | |
elif 'up' in old_key: | |
new_key += '.lora_B.weight' | |
else: | |
# Handle other potential key patterns here | |
new_key = old_key | |
new_state_dict[new_key] = value | |
return new_state_dict | |
# Load the original LoRA weights from a safetensors file | |
old_state_dict = safetensors.torch.load_file("realism_lora.safetensors") | |
# Print the original state dictionary keys and their shapes | |
for key, value in old_state_dict.items(): | |
print(f"{key} {list(value.shape)} {value.dtype}") | |
# Convert the keys to the Diffusers format | |
new_state_dict = convert_lora_keys(old_state_dict) | |
# Print the converted state dictionary keys and their shapes | |
for key, value in new_state_dict.items(): | |
print(f"{key} {list(value.shape)} {value.dtype}") | |
# Print the length of both dictionaries to ensure all keys were converted | |
print(len(old_state_dict), len(new_state_dict)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Oh, alright. Thank you for that insight.
Do you think I should still work on this since I see it has already been implemented?