-
-
Save LeszekSwirski/82372fc2a869a57a3ded to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib import mlab | |
def one_over_f(f, knee, alpha): | |
desc = np.ones_like(f) | |
desc[f<KNEE] = np.abs((f[f<KNEE]/KNEE)**(-alpha)) | |
desc[0] = 1 | |
return desc | |
white_noise_sigma = 3 #mK * sqrt(s) | |
SFREQ = 2 #Hz | |
KNEE = 5 / 1e3 #Hz | |
ALPHA = .7 | |
N = SFREQ * 3600 * 2 # 4 hours | |
#generate white noise in time domain | |
wn=np.random.normal(0.,white_noise_sigma*np.sqrt(SFREQ),N) | |
#shaping in freq domain | |
s = np.fft.rfft(wn) | |
f = np.fft.fftfreq(N, d=1./SFREQ)[:len(s)] | |
f[-1]=np.abs(f[-1]) | |
fft_sim = s * one_over_f(f, KNEE, ALPHA) | |
T_sim = np.fft.irfft(fft_sim) | |
#PSD - 1 hour window | |
NFFT = int(SFREQ*60*60*1) | |
s_sim, f_sim = mlab.psd(T_sim, NFFT=NFFT, Fs=SFREQ, scale_by_freq=True) | |
#plot | |
plt.figure() | |
plt.plot(f_sim, np.sqrt(s_sim), label='sim') | |
plt.loglog(f_sim, one_over_f(f_sim, KNEE, ALPHA) * white_noise_sigma*1e3*np.sqrt(2), 'r',label='noise model') | |
plt.vlines(KNEE,*plt.ylim()) | |
plt.grid(); plt.xlabel('Freq'); plt.title('Amplitude spectrum'); plt.legend() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment