Last active
August 30, 2019 20:59
-
-
Save Lexie88rus/8ab37c8ea8c9f92b0efbca3c584bf063 to your computer and use it in GitHub Desktop.
Create and initialize LSTM model with PyTorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# import PyTorch | |
import torch | |
import torch.nn as nn | |
# Create LSTM | |
class SimpleLSTM(nn.Module): | |
''' | |
Simple LSTM model to generate kernel titles. | |
Arguments: | |
- input_size - should be equal to the vocabulary size | |
- output_size - should be equal to the vocabulary size | |
- hidden_size - hyperparameter, size of the hidden state of LSTM. | |
''' | |
def __init__(self, input_size, hidden_size, output_size): | |
super(SimpleLSTM, self).__init__() | |
self.hidden_size = hidden_size | |
self.lstm = nn.LSTM(input_size, hidden_size) | |
self.linear = nn.Linear(hidden_size, output_size) | |
self.softmax = nn.LogSoftmax(dim=1) | |
def forward(self, input, hidden): | |
output, hidden = self.lstm(input.view(1, 1, -1), hidden) | |
output = self.linear(output[-1].view(1, -1)) | |
output = self.softmax(output) | |
return output, hidden | |
# the initialization of the hidden state | |
# device is cpu or cuda | |
# I suggest using cude to speedup the computation | |
def initHidden(self, device): | |
return (torch.zeros(1, 1, n_hidden).to(device), torch.zeros(1, 1, n_hidden).to(device)) | |
# Initialize LSTM | |
# number of hidden units | |
n_hidden = 128 | |
# inputs and outputs of RNN are tensors representing words from the vocabulary | |
rnn = SimpleLSTM(vocab_size, n_hidden, vocab_size) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment