Skip to content

Instantly share code, notes, and snippets.

View Libardo1's full-sized avatar

Libardo Lopez Libardo1

  • Bogotá, Colombia
View GitHub Profile
library(httr)
library(ggplot2)
add_cat <- function(width = 400, height = 400){
r <- GET(paste("http://theoldreader.com/kittens", width, height, sep = "/"))
stop_for_status(r)
img <- content(r)
bw <- 0.2989*img[,,1] + 0.5870*img[,,2] + 0.1140*img[,,3]
lighter <- bw + (0.7 * (1-bw))
annotation_raster(lighter, xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=Inf)
require(proto)
stat_qqline <- function (mapping = NULL, data = NULL, geom = "abline", position = "identity",
distribution = qnorm, dparams = list(), na.rm = FALSE, ...) {
StatQqline$new(mapping = mapping, data = data, geom = geom, position = position,
distribution = distribution, dparams = dparams, na.rm = na.rm, ...)
}
StatQqline <- proto(ggplot2:::Stat, {
objname <- "qqline"
@Libardo1
Libardo1 / july4.R
Created August 1, 2014 14:42 — forked from cwickham/july4.R
library(plyr)
library(ggplot2)
# from: http://www.codeproject.com/Articles/18149/Draw-a-US-Flag-using-C-and-GDI
star_coords <- function(x, y, r, r1){
a <- 72 * pi /180
b <- a/2
df <- data.frame(
x = x + c(0, r1*sin(b), r*cos(pi/2 - a), r1*cos(a + b - pi/2), r*sin(b),
0, -r*sin(b), -r1*cos(a + b - pi/2), - r*cos(pi/2 - a), -r1*sin(b)),
fitted_variofit <- function (x, max.dist, scaled = FALSE, ...) {
my.l <- list()
if (missing(max.dist)) {
my.l$max.dist <- x$max.dist
if (is.null(my.l$max.dist))
stop("argument max.dist needed for this object")
}
else my.l$max.dist <- max.dist
if (any(x$cov.model == c("matern", "powered.exponential",
"cauchy", "gencauchy", "gneiting.matern")))
library(shiny)
library(ggplot2)
# Define server logic required to generate and plot a random distribution
shinyServer(function(input, output) {
generate_data <- reactive(
function(){
mu <- c(input$mu_1, input$mu_2, input$mu_3)
tmp <- data.frame(len = rnorm(length(mu) * input$n,
mean = rep(mu, each = input$n),
require(proto)
stat_qqline <- function (mapping = NULL, data = NULL, geom = "abline", position = "identity",
distribution = qnorm, dparams = list(), na.rm = FALSE, ...) {
StatQqline$new(mapping = mapping, data = data, geom = geom, position = position,
distribution = distribution, dparams = dparams, na.rm = na.rm, ...)
}
StatQqline <- proto(ggplot2:::Stat, {
objname <- "qqline"
#------------------------------------------------------------
# REVOLUTION ANALYTICS WEBINAR: INTRODUCTION TO R FOR DATA MINING
# February 14, 2013
# Joseph B. Rickert
# Technical Marketing Manager
#
# BIG DATA with RevoScaleR
#
# Copyright: Revolution Analytics
easterEgg.BadWorder.list={
"4r5e":1,
"5h1t":1,
"5hit":1,
a55:1,
anal:1,
anus:1,
ar5e:1,
arrse:1,
arse:1,
@Libardo1
Libardo1 / tokenizer.R
Last active August 29, 2015 14:17 — forked from nonsleepr/tokenizer.R
ngrams.tokenizer <- function(x, n = 2) {
trim <- function(x) gsub("(^\\s+|\\s+$)", "", x)
terms <- strsplit(trim(x), split = "\\s+")[[1]]
ngrams <- vector()
if (length(terms) >= n) {
for (i in n:length(terms)) {
ngram <- paste(terms[(i-n+1):i], collapse = " ")
ngrams <- c(ngrams,ngram)
}
}

Markov Chains

A while back I wrote a blog post explaining Markov chains and demonstrating different ways of finding their steady-state distribution in R. Now, I want to play with Markov chains as a graph. I’m going to pull examples from around the internet and answer the same questions in Cypher as the authors do with matrices. This gives me the opportunity to explore more advanced Cypher queries while working with a topic I enjoy very much (stochastic processes and Markov chains). So this is officially just for funsies.

I found three Markov chains online that I’m going to showcase, and they involve the following topics: