Skip to content

Instantly share code, notes, and snippets.

View Libardo1's full-sized avatar

Libardo Lopez Libardo1

  • Bogotá, Colombia
View GitHub Profile
@Libardo1
Libardo1 / timeseries_cnn.py
Created April 21, 2019 23:00 — forked from jkleint/timeseries_cnn.py
Example of using Keras to implement a 1D convolutional neural network (CNN) for timeseries prediction.
#!/usr/bin/env python
"""
Example of using Keras to implement a 1D convolutional neural network (CNN) for timeseries prediction.
"""
from __future__ import print_function, division
import numpy as np
from keras.layers import Convolution1D, Dense, MaxPooling1D, Flatten
from keras.models import Sequential
### Lending Club example using cleaned up dataset & h2o.ensemble ###
library(h2o)
h2o.init(nthreads = -1, max_mem_size = "8G")
loan_csv <- "https://raw.githubusercontent.com/h2oai/app-consumer-loan/master/data/loan.csv"
data <- h2o.importFile(loan_csv) # 163994 x 15
data$bad_loan <- as.factor(data$bad_loan)
rand <- h2o.runif(data, seed = 1)
# install.packages("h2o", type="source", repos=(c("http://h2o-release.s3.amazonaws.com/h2o/rel-slater/5/R")))
library(h2o)
localH2O <- h2o.init(ip = "XX.XX.XX.XX", port = 54321)
#higgs <- h2o.importFile("/home/0xdiag/datasets/higgs/HIGGS.csv", destination_frame = "higgs") #Local copy
higgs <- h2o.importFile("http://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz", destination_frame = "higgs")
dim(higgs) #11M x 29
higgs$C1 <- as.factor(higgs$C1) #Encode response as categorical
# Quiz 4
# Question 1.
library(ElemStatLearn)
library(randomForest)
library(caret)
data(vowel.train)
data(vowel.test)
@Libardo1
Libardo1 / mortgage_repayments.ipynb
Created January 8, 2018 15:46 — forked from nhmc/mortgage_repayments.ipynb
A mortgage repayment calculator written in Python using a Jupyter notebook
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
import pandas as pd
import numpy as np
'''
Some functions for loading a dataset and performing simple data preparation
'''
def load_dataset(filename, filetype='csv', header=True):
'''
@Libardo1
Libardo1 / keras_bidirectional_tagger.py
Created June 23, 2017 21:21 — forked from dirko/keras_bidirectional_tagger.py
Keras bidirectional LSTM NER tagger
# Keras==1.0.6
from keras.models import Sequential
import numpy as np
from keras.layers.recurrent import LSTM
from keras.layers.core import TimeDistributedDense, Activation
from keras.preprocessing.sequence import pad_sequences
from keras.layers.embeddings import Embedding
from sklearn.cross_validation import train_test_split
from keras.layers import Merge
from keras.backend import tf
@Libardo1
Libardo1 / 538.json
Created June 7, 2017 16:27 — forked from CamDavidsonPilon/538.json
Use the two files below to mimic graphs on 538. www.dataorigami.net/blogs/fivethirtyeight-mpl
{
"lines.linewidth": 2.0,
"examples.download": true,
"patch.linewidth": 0.5,
"legend.fancybox": true,
"axes.color_cycle": [
"#30a2da",
"#fc4f30",
"#e5ae38",
"#6d904f",
@Libardo1
Libardo1 / keras_prediction.py
Created May 31, 2017 21:37 — forked from hnykda/keras_prediction.py
Predicting sequences of vectors (regression) in Keras using RNN - LSTM (danielhnyk.cz)
import pandas as pd
from random import random
flow = (list(range(1,10,1)) + list(range(10,1,-1)))*100
pdata = pd.DataFrame({"a":flow, "b":flow})
pdata.b = pdata.b.shift(9)
data = pdata.iloc[10:] * random() # some noise
import numpy as np