-
-
Save dirko/1d596ca757a541da96ac3caa6f291229 to your computer and use it in GitHub Desktop.
# Keras==1.0.6 | |
from keras.models import Sequential | |
import numpy as np | |
from keras.layers.recurrent import LSTM | |
from keras.layers.core import TimeDistributedDense, Activation | |
from keras.preprocessing.sequence import pad_sequences | |
from keras.layers.embeddings import Embedding | |
from sklearn.cross_validation import train_test_split | |
from keras.layers import Merge | |
from keras.backend import tf | |
from lambdawithmask import Lambda as MaskLambda | |
from sklearn.metrics import confusion_matrix, accuracy_score | |
raw = open('wikigold.conll.txt', 'r').readlines() | |
all_x = [] | |
point = [] | |
for line in raw: | |
stripped_line = line.strip().split(' ') | |
point.append(stripped_line) | |
if line == '\n': | |
all_x.append(point[:-1]) | |
point = [] | |
all_x = all_x[:-1] | |
lengths = [len(x) for x in all_x] | |
short_x = [x for x in all_x if len(x) < 64] | |
X = [[c[0] for c in x] for x in short_x] | |
y = [[c[1] for c in y] for y in short_x] | |
all_text = [c for x in X for c in x] | |
words = list(set(all_text)) | |
word2ind = {word: index for index, word in enumerate(words)} | |
ind2word = {index: word for index, word in enumerate(words)} | |
labels = list(set([c for x in y for c in x])) | |
label2ind = {label: (index + 1) for index, label in enumerate(labels)} | |
ind2label = {(index + 1): label for index, label in enumerate(labels)} | |
print 'Input sequence length range: ', max(lengths), min(lengths) | |
maxlen = max([len(x) for x in X]) | |
print 'Maximum sequence length:', maxlen | |
def encode(x, n): | |
result = np.zeros(n) | |
result[x] = 1 | |
return result | |
X_enc = [[word2ind[c] for c in x] for x in X] | |
X_enc_reverse = [[c for c in reversed(x)] for x in X_enc] | |
max_label = max(label2ind.values()) + 1 | |
y_enc = [[0] * (maxlen - len(ey)) + [label2ind[c] for c in ey] for ey in y] | |
y_enc = [[encode(c, max_label) for c in ey] for ey in y_enc] | |
X_enc_f = pad_sequences(X_enc, maxlen=maxlen) | |
X_enc_b = pad_sequences(X_enc_reverse, maxlen=maxlen) | |
y_enc = pad_sequences(y_enc, maxlen=maxlen) | |
(X_train_f, X_test_f, X_train_b, | |
X_test_b, y_train, y_test) = train_test_split(X_enc_f, X_enc_b, y_enc, | |
test_size=11*32, train_size=45*32, random_state=42) | |
print 'Training and testing tensor shapes:' | |
print X_train_f.shape, X_test_f.shape, X_train_b.shape, X_test_b.shape, y_train.shape, y_test.shape | |
max_features = len(word2ind) | |
embedding_size = 128 | |
hidden_size = 32 | |
out_size = len(label2ind) + 1 | |
def reverse_func(x, mask=None): | |
return tf.reverse(x, [False, True, False]) | |
model_forward = Sequential() | |
model_forward.add(Embedding(max_features, embedding_size, input_length=maxlen, mask_zero=True)) | |
model_forward.add(LSTM(hidden_size, return_sequences=True)) | |
model_backward = Sequential() | |
model_backward.add(Embedding(max_features, embedding_size, input_length=maxlen, mask_zero=True)) | |
model_backward.add(LSTM(hidden_size, return_sequences=True)) | |
model_backward.add(MaskLambda(function=reverse_func, mask_function=reverse_func)) | |
model = Sequential() | |
model.add(Merge([model_forward, model_backward], mode='concat')) | |
model.add(TimeDistributedDense(out_size)) | |
model.add(Activation('softmax')) | |
model.compile(loss='categorical_crossentropy', optimizer='adam') | |
batch_size = 32 | |
model.fit([X_train_f, X_train_b], y_train, batch_size=batch_size, nb_epoch=40, | |
validation_data=([X_test_f, X_test_b], y_test)) | |
score = model.evaluate([X_test_f, X_test_b], y_test, batch_size=batch_size) | |
print('Raw test score:', score) | |
def score(yh, pr): | |
coords = [np.where(yhh > 0)[0][0] for yhh in yh] | |
yh = [yhh[co:] for yhh, co in zip(yh, coords)] | |
ypr = [prr[co:] for prr, co in zip(pr, coords)] | |
fyh = [c for row in yh for c in row] | |
fpr = [c for row in ypr for c in row] | |
return fyh, fpr | |
pr = model.predict_classes([X_train_f, X_train_b]) | |
yh = y_train.argmax(2) | |
fyh, fpr = score(yh, pr) | |
print 'Training accuracy:', accuracy_score(fyh, fpr) | |
print 'Training confusion matrix:' | |
print confusion_matrix(fyh, fpr) | |
pr = model.predict_classes([X_test_f, X_test_b]) | |
yh = y_test.argmax(2) | |
fyh, fpr = score(yh, pr) | |
print 'Testing accuracy:', accuracy_score(fyh, fpr) | |
print 'Testing confusion matrix:' | |
print confusion_matrix(fyh, fpr) |
Just for everyone's reference,
In Keras 2.0^, I got a model similar to this one to work:
model = Sequential()
model.add(Embedding(input_dim=max_features, output_dim=embedding_size,
input_length=maxlen, mask_zero=True))
model.add(Bidirectional(LSTM(hidden_size, return_sequences=True)))
model.add(TimeDistributed(Dense(out_size)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
The code throws:
InvalidArgumentError (see above for traceback): axis 0 specified more than once.
[[Node: ReverseV2 = ReverseV2[T=DT_FLOAT, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](transpose_5, ReverseV2/axis)]]
in here:
def reverse_func(x, mask=None):
return tf.reverse(x, [False, True, False])
Any idea what it could be?
Keras Training Error:
When I run the code it renders the following error:
File "C:\Users\Kidane\Anaconda3\lib\site-packages\keras\engine\training.py", line 108, in standardize_input_data
str(array.shape))
Exception: Error when checking model target: expected activation_1 to have shape (None, 63, 32) but got array with shape (1440, 63, 6)
Please help me on how to fix this issue,
Thanks,
Kidane
Thanks for this great tutorial!
I have problem with Masking function:
model_backward.add(MaskLambda(function=reverse_func, mask_function=reverse_func))
MaskLambda is not a resolved function in my version of keras so I replace it with Masking() function which I imported it from "from keras.layers import Masking"
Is this fine so far?
another thing is that the argument are not acceptable with this function :
model_backward.add(Masking(function=reverse_func, mask_function=reverse_func))
How could I replace it?
TypeError: ('Keyword argument not understood:', 'function')
Thank you for sharing. Amazing code.
I am a beginner in RNN and LSTM. My question might be very basic. Why are we including X_enc_reverse( or X_train_b) in the model.
And can you please suggest a decent documentation to read about it
Hello, I am trying to train my NER model and I found an example script on how to do it with Keras http://pythonexample.com/code/keras%20unidirectional%20tagger/
I am surprise do see that there are no comments in the code, so I did some google search and I found the same think with your git repo.
Would you please suggest a tutorial where the code is well explained?
Thank you.
I am most grateful to you for your share. Would you mind giving me your input file wikigold.conll.txt and its format? and your test files. Thank you in advance!