-
-
Save LittleOrangeC/4359355 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# | |
## 12/21/12 - Ths is my fork of DSparks Denver debate analysis script | |
# | |
########### | |
# Requirement - run this command to create the "denver.txt" file | |
# curl https://raw.github.com/dsparks/Test_image/master/Denver_Debate_Transcript.txt > denver.txt | |
# From: http://www.cnn.com/2012/10/03/politics/debate-transcript/index.html | |
rm(list = ls()) | |
doInstall <- TRUE # Change to FALSE if you don't want packages installed. | |
toInstall <- c("zoo", "tm", "ggplot2", "Snowball") | |
if(doInstall){install.packages(toInstall, repos = "http://cran.r-project.org")} | |
lapply(toInstall, library, character.only = TRUE) | |
# From: http://www.cnn.com/2012/10/03/politics/debate-transcript/index.html | |
#Transcript <- readLines("https://raw.github.com/dsparks/Test_image/master/Denver_Debate_Transcript.txt") | |
con <- file("denver.txt", "r", blocking = FALSE) | |
Transcript <- readLines(con) | |
head(Transcript, 20) | |
Transcript <- data.frame(Words = Transcript, Speaker = NA, stringsAsFactors = FALSE) | |
Transcript$Speaker[regexpr("LEHRER: ", Transcript$Words) != -1] <- 1 | |
Transcript$Speaker[regexpr("OBAMA: ", Transcript$Words) != -1] <- 2 | |
Transcript$Speaker[regexpr("ROMNEY: ", Transcript$Words) != -1] <- 3 | |
table(Transcript$Speaker) | |
Transcript$Speaker <- na.locf(Transcript$Speaker) | |
# Remove moderator: | |
Transcript <- Transcript[Transcript$Speaker != 1, ] | |
myCorpus <- Corpus(DataframeSource(Transcript)) | |
inspect(myCorpus) | |
myCorpus <- tm_map(myCorpus, tolower) # Make lowercase | |
myCorpus <- tm_map(myCorpus, removePunctuation, preserve_intra_word_dashes = FALSE) | |
myCorpus <- tm_map(myCorpus, removeWords, stopwords("english")) # Remove stopwords | |
myCorpus <- tm_map(myCorpus, removeWords, c("lehrer", "obama", "romney")) | |
myCorpus <- tm_map(myCorpus, stemDocument) # Stem words | |
inspect(myCorpus) | |
docTermMatrix <- DocumentTermMatrix(myCorpus) | |
docTermMatrix <- inspect(docTermMatrix) | |
sort(colSums(docTermMatrix)) | |
table(colSums(docTermMatrix)) | |
### so 150 here = items said 7 times | |
### so 100 here = items said 10 times | |
### so 50 here = items said 17 times | |
### so 25 here = items said 24 times | |
cutoffCount <- tail(sort(colSums(docTermMatrix)), 15)[1] | |
termCountFrame <- data.frame(Term = colnames(docTermMatrix)) | |
termCountFrame$Obama <- colSums(docTermMatrix[Transcript$Speaker == 2, ]) | |
termCountFrame$Romney <- colSums(docTermMatrix[Transcript$Speaker == 3, ]) | |
termCountFrame$Count <- colSums(docTermMatrix)[termCountFrame$Term] | |
#termCountFrame$Count <- rowSums(docTermMatrix)[termCountFrame$Term] | |
head(termCountFrame) | |
# Plot | |
## - this didn't work | |
##zp1 <- ggplot(termCountFrame[termCountFrame$Count >= cutoffCount, termCountFrame$Obama >= 1, ]) | |
zp1 <- ggplot(termCountFrame[termCountFrame$Count >= cutoffCount, ]) | |
zp1 <- zp1 + geom_text(aes(x = Obama, y = Romney, label = Term)) | |
print(zp1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This just filters the terms.