Last active
October 18, 2024 00:46
-
-
Save Lohann/1d3c1769cfa25d3ca94edac01758653c to your computer and use it in GitHub Desktop.
Basic implementation of RSA Accumulator in rust
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// [dependencies] | |
// blake2b_simd = "1.0.1" | |
// num-bigint = "0.4.3" | |
// num-integer = "0.1.45" | |
// num-prime = { version = "0.4.3", features=["num-bigint"] } | |
// num-traits = "0.2.15" | |
use blake2b_simd; | |
use num_bigint::{BigInt, BigUint, Sign}; | |
use num_integer::Integer; | |
use num_traits::{Num, One, Signed, Zero}; | |
use std::ops::{Div, MulAssign, Rem, RemAssign}; | |
/// Primality test | |
fn is_prime(n: &BigUint) -> bool { | |
num_prime::nt_funcs::is_prime(n, None).probably() | |
} | |
/// Do a Blake2b hash and return result. | |
#[inline(always)] | |
fn blake2<const N: usize>(data: &[u8]) -> [u8; N] { | |
blake2b_simd::Params::new() | |
.hash_length(N) | |
.hash(data) | |
.as_bytes() | |
.try_into() | |
.expect("slice is always the necessary length") | |
} | |
/// Deterministically hash bytes to prime | |
fn hash_to_prime(data: &[u8]) -> BigUint { | |
let mut hash: [u8; 32] = blake2(data); | |
let mut num = BigUint::from_bytes_le(&hash); | |
loop { | |
if is_prime(&num) { | |
return num; | |
} | |
hash = blake2(&hash); | |
num = BigUint::from_bytes_le(&hash); | |
} | |
} | |
pub fn bezoute_coefficients(a: &BigUint, b: &BigUint) -> (BigInt, BigInt) { | |
let a = BigInt::from_biguint(Sign::Plus, a.clone()); | |
let b = BigInt::from_biguint(Sign::Plus, b.clone()); | |
let gcd = a.extended_gcd(&b); | |
(gcd.x, gcd.y) | |
} | |
/// Calculate the modular inverse of `g`. | |
#[inline] | |
pub fn mod_inverse(g: &BigUint, n: &BigUint) -> Option<BigUint> { | |
let g = BigInt::from_biguint(Sign::Plus, g.clone()); | |
let n = BigInt::from_biguint(Sign::Plus, n.clone()); | |
let gcd = g.extended_gcd(&n); | |
if !gcd.gcd.is_one() { | |
return None; | |
} | |
let x = if gcd.x.is_negative() { | |
gcd.x + n | |
} else { | |
gcd.x | |
}; | |
let (_, x) = x.into_parts(); // Convert BigInt to BigUint | |
Some(x) | |
} | |
/// Digest (or accumulator) of a set | |
pub struct RsaDigest { | |
acc: BigUint, | |
} | |
/// Proof that an element is in the accumulator set | |
pub struct MembershipProof<E: AsRef<[u8]>> { | |
proof: BigUint, | |
members: Vec<E>, | |
} | |
/// Proof that an element is not in the accumulator set | |
pub struct NonMembershipProof<E: AsRef<[u8]>> { | |
d: BigUint, | |
b: BigInt, | |
element: E, | |
} | |
pub struct RsaAccumulatorProver { | |
a0: BigUint, | |
inverse_a0: BigUint, | |
n: BigUint, | |
product: BigUint, | |
} | |
impl RsaAccumulatorProver { | |
pub fn new(a0: BigUint, n: BigUint) -> Result<Self, &'static str> { | |
let Some(inverse_a0) = mod_inverse(&a0, &n) else { | |
return Err("a0 and n must be coprimes"); | |
}; | |
Ok(Self { | |
a0, | |
inverse_a0, | |
n, | |
product: BigUint::one(), | |
}) | |
} | |
/// Returns `true` if the RSA set contains the prime value. | |
fn contains_prime(&mut self, prime: &BigUint) -> bool { | |
(&self.product).rem(prime).is_zero() | |
} | |
/// Returns `true` if the RSA set contains a value. | |
pub fn contains<E: AsRef<[u8]>>(&mut self, element: E) -> bool { | |
let prime = hash_to_prime(element.as_ref()); | |
self.contains_prime(&prime) | |
} | |
/// Adds a value to the RSA set. | |
/// | |
/// Returns whether the value was newly inserted. That is: | |
/// | |
/// - If the set did not previously contain this value, `true` is returned. | |
/// - If the set already contained this value, `false` is returned. | |
pub fn insert<E: AsRef<[u8]>>(&mut self, element: E) -> bool { | |
let prime = hash_to_prime(element.as_ref()); | |
if self.contains_prime(&prime) { | |
return false; | |
} | |
self.product.mul_assign(&prime); | |
true | |
} | |
/// Removes a value from the set. Returns whether the value was | |
/// present in the set. | |
pub fn remove<E: AsRef<[u8]>>(&mut self, element: E) -> bool { | |
let prime = hash_to_prime(element.as_ref()); | |
let (result, remainder) = (&self.product).div_rem(&prime); | |
if !remainder.is_zero() { | |
return false; | |
} | |
self.product = result; | |
true | |
} | |
pub fn prove_membership<E: AsRef<[u8]>>(&self, members: Vec<E>) -> MembershipProof<E> { | |
let primes_product = members | |
.iter() | |
.map(|e| hash_to_prime(e.as_ref())) | |
.fold(BigUint::one(), |product, next| product * next); | |
let exponent = (&self.product).div(&primes_product); | |
MembershipProof { | |
proof: self.a0.modpow(&exponent, &self.n), | |
members, | |
} | |
} | |
pub fn prove_non_membership<E: AsRef<[u8]>>(&self, element: E) -> NonMembershipProof<E> { | |
let prime = hash_to_prime(element.as_ref()); | |
let (a, b) = bezoute_coefficients(&prime, &self.product); | |
let d = match a.into_parts() { | |
(Sign::Minus, positive_a) => self.inverse_a0.modpow(&positive_a, &self.n), | |
(_, positive_a) => self.a0.modpow(&positive_a, &self.n), | |
}; | |
NonMembershipProof { d, b, element } | |
} | |
pub fn digest(&self) -> RsaDigest { | |
RsaDigest { | |
acc: self.a0.modpow(&self.product, &self.n), | |
} | |
} | |
} | |
pub struct RsaAccumulatorVerifier { | |
a0: BigUint, | |
n: BigUint, | |
} | |
impl RsaAccumulatorVerifier { | |
pub fn new(a0: BigUint, n: BigUint) -> Self { | |
Self { a0, n } | |
} | |
pub fn verify_membership<E: AsRef<[u8]>>( | |
&self, | |
proof: &MembershipProof<E>, | |
digest: &RsaDigest, | |
) -> bool { | |
let product = proof | |
.members | |
.iter() | |
.map(|e| hash_to_prime(e.as_ref())) | |
.fold(BigUint::one(), |mut acc, next| { | |
acc.mul_assign(&next); | |
acc | |
}); | |
let result = proof.proof.modpow(&product, &self.n); | |
result.eq(&digest.acc) | |
} | |
pub fn verify_non_membership<E: AsRef<[u8]>>( | |
&self, | |
proof: &NonMembershipProof<E>, | |
digest: &RsaDigest, | |
) -> bool { | |
let prime = hash_to_prime(proof.element.as_ref()); | |
let second_power = match (proof.b.sign(), proof.b.magnitude()) { | |
(Sign::Minus, positive_b) => { | |
let Some(inverse_digest) = mod_inverse(&digest.acc, &self.n) else { | |
return false; | |
}; | |
inverse_digest.modpow(positive_b, &self.n) | |
} | |
(_, positive_b) => digest.acc.modpow(positive_b, &self.n), | |
}; | |
let mut result = proof.d.modpow(&prime, &self.n); | |
result.mul_assign(&second_power); | |
result.rem_assign(&self.n); | |
result == self.a0 | |
} | |
} | |
impl From<&RsaAccumulatorProver> for RsaAccumulatorVerifier { | |
fn from(prover: &RsaAccumulatorProver) -> Self { | |
Self::new(prover.a0.clone(), prover.n.clone()) | |
} | |
} | |
fn main() { | |
// Using a public known RSA instance with 2048bits from: | |
// - https://rsa.cash/bounty-instances (Challenge 3 instance) | |
// obs: RSA Accumulators can be build in a trustless setup using an different group | |
let n = BigUint::from_str_radix("7efce54e174bb141d000b4375659f45ac1e3e9ccc1afcde85cc98b7b6ce626457361e90d1d9fe0af72ba63f3b0d20af8084bd6f981584af1e9197288811e72afaf488a1360e4d5d6f9b08220e16dd05860bd571e3171eb10dcc60241bf6f64cf03ddfb0556aa9a61e9850874e442564c020cf283813f5215d36281748b766ffa8a3486cd70686b5590d499a1a72d9baa87c0dc223c8f5b71d18fd24888b2872f0530be8cde0f7be8f591848bc210f2966dcaab6853d09bfd550ebdcd244c394cc83ac19ec75bf8b82774719555483cc2e3fbac3201c1aa518d25fdb37d50e56f3515ad5e4609d252fa7ded3b5123c0abc8a0ce137ef9989843d1452b87ccca6b", 16).unwrap(); | |
let a0 = BigUint::from(65537u32); | |
// Create a prover and verifier | |
let mut prover = RsaAccumulatorProver::new(a0, n).unwrap(); | |
let verifier = RsaAccumulatorVerifier::from(&prover); | |
// Insert elements in the RSA Accumulator Set | |
prover.insert("event 01"); | |
prover.insert("event 02"); | |
prover.insert("event 03"); | |
prover.insert("event 04"); | |
// Calculate the digest | |
let digest = prover.digest(); | |
// Create and verify membership proof | |
let membership_proof = prover.prove_membership(vec!["event 01", "event 02"]); | |
// Verify the proof | |
if verifier.verify_membership(&membership_proof, &digest) { | |
println!( | |
"Valid proof: The elements {:?} are in the set.", | |
membership_proof.members | |
); | |
} else { | |
println!("Invalid membership proof"); | |
} | |
// Create non-membership proof | |
let non_membership_proof = prover.prove_non_membership("event 05"); | |
// Verify non-membership proof | |
if verifier.verify_non_membership(&non_membership_proof, &digest) { | |
println!( | |
"Valid proof: Element \"{}\" is not in the set.", | |
non_membership_proof.element | |
); | |
} else { | |
println!("Invalid non-membership proof"); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment