Last active
August 16, 2025 04:45
-
-
Save Lohann/e22c30750be1ad65321faacd2f68696b to your computer and use it in GitHub Desktop.
Heap's Permutation Algorithm in Rust
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Author: Lohann Paterno Coutinho Ferreira | |
// | |
// Heap's Permutation Algorithm | |
/// Move all duplicated elements to the end of the array. | |
/// Returns the number of distinct elements. | |
fn move_duplicated<T: PartialEq>(array: &mut [T]) -> usize { | |
let mut n = array.len(); | |
let mut i = 0; | |
while i < n { | |
let mut j = i + 1; | |
while j < n { | |
if <T as PartialEq>::eq(&array[i], &array[j]) { | |
n -= 1; | |
array.swap(j, n); | |
} else { | |
j += 1; | |
} | |
} | |
i += 1; | |
} | |
n | |
} | |
/// Non-Recursive Heap's Permutation | |
pub fn heap_permutation<const N: usize, T, R, F>(array: &mut [T; N], mut callback: F) -> Option<R> | |
where | |
T: Eq, | |
R: Send, | |
F: FnMut(&[T; N]) -> Option<R>, | |
{ | |
// c[k] encodes the for-loop counter for | |
// when permutations(k + 1, A) is called | |
let mut c: [usize; N] = [0usize; N]; | |
// (optional) remove duplicated elements. | |
let len = move_duplicated(array); | |
if let Some(result) = callback(array) { | |
return Some(result); | |
} | |
// i acts similarly to a stack pointer | |
let mut i = 1; | |
while i < len { | |
if c[i] < i { | |
let j = if (i % 2) == 0 { 0 } else { c[i] }; | |
array.swap(j, i); | |
if let Some(result) = callback(array) { | |
return Some(result); | |
} | |
// Swap has occurred ending the while-loop. | |
// Simulate the increment of the while-loop counter | |
c[i] += 1; | |
// Simulate recursive call reaching the base case by bringing | |
// the pointer to the base case analog in the array | |
i = 1; | |
} else { | |
// Calling permutations(i+1, A) has ended as the while-loop | |
// terminated. Reset the state and simulate popping the stack | |
// by incrementing the pointer. | |
c[i] = 0; | |
i += 1; | |
} | |
} | |
None | |
} | |
fn internal_recursive_permutation<T, R, F>(array: &mut [T], n: usize, callback: &mut F) -> Option<R> | |
where | |
T: Eq, | |
R: Send, | |
F: FnMut(&[T]) -> Option<R>, | |
{ | |
if n <= 1 { | |
return (*callback)(array); | |
} | |
for i in 0..n { | |
if let Some(result) = internal_recursive_permutation(array, n - 1, callback) { | |
return Some(result); | |
} | |
if (n % 2) == 1 { | |
array.swap(0, n - 1); | |
} else { | |
array.swap(i, n - 1); | |
} | |
} | |
None | |
} | |
pub fn recursive_permutation<T, R, F>(array: &mut [T], mut callback: F) -> Option<R> | |
where | |
T: Eq, | |
R: Send, | |
F: FnMut(&[T]) -> Option<R>, | |
{ | |
let len = remove_duplicated(array); | |
internal_recursive_permutation::<T, R, F>(array, len, &mut callback) | |
} | |
fn main() { | |
// NON-RECURSIVE | |
let mut counter = 0; | |
heap_permutation(&mut [1, 2, 3, 4], |array| { | |
counter += 1; | |
println!("({counter}) {array:?}"); | |
Option::<()>::None | |
}); | |
println!(); | |
// WITH DUPLICATED ELEMENTS | |
counter = 0; | |
heap_permutation(&mut [1, 2, 2, 3], |array| { | |
counter += 1; | |
println!("({counter}) {array:?}"); | |
Option::<()>::None | |
}); | |
println!(); | |
// RECURSIVE | |
counter = 0; | |
recursive_permutation(&mut [1, 2, 2, 3], |array| { | |
counter += 1; | |
println!("({counter}) {array:?}"); | |
Option::<()>::None | |
}); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment