Skip to content

Instantly share code, notes, and snippets.

@Luonic
Created December 20, 2016 15:02
Show Gist options
  • Save Luonic/5f3300ddea6948468dd6a3824905d9b5 to your computer and use it in GitHub Desktop.
Save Luonic/5f3300ddea6948468dd6a3824905d9b5 to your computer and use it in GitHub Desktop.
I1220 16:01:43.502776 3961783232 solver.cpp:228] Iteration 0, loss = 5.0178
I1220 16:01:43.502820 3961783232 solver.cpp:244] Train net output #0: loss = 5.0178 (* 1 = 5.0178 loss)
I1220 16:01:43.502847 3961783232 sgd_solver.cpp:106] Iteration 0, lr = 0.001
I1220 16:02:51.024165 3961783232 solver.cpp:228] Iteration 100, loss = 1.87306
I1220 16:02:51.063248 3961783232 solver.cpp:244] Train net output #0: loss = 1.87306 (* 1 = 1.87306 loss)
I1220 16:02:51.063267 3961783232 sgd_solver.cpp:106] Iteration 100, lr = 0.001
I1220 16:03:58.084491 3961783232 solver.cpp:228] Iteration 200, loss = 1.01183
I1220 16:03:58.084777 3961783232 solver.cpp:244] Train net output #0: loss = 1.01183 (* 1 = 1.01183 loss)
I1220 16:03:58.084800 3961783232 sgd_solver.cpp:106] Iteration 200, lr = 0.001
I1220 16:05:05.282796 3961783232 solver.cpp:228] Iteration 300, loss = 0.772216
I1220 16:05:05.323297 3961783232 solver.cpp:244] Train net output #0: loss = 0.772216 (* 1 = 0.772216 loss)
I1220 16:05:05.323317 3961783232 sgd_solver.cpp:106] Iteration 300, lr = 0.001
I1220 16:06:12.123565 3961783232 solver.cpp:228] Iteration 400, loss = 0.632358
I1220 16:06:12.158099 3961783232 solver.cpp:244] Train net output #0: loss = 0.632358 (* 1 = 0.632358 loss)
I1220 16:06:12.158118 3961783232 sgd_solver.cpp:106] Iteration 400, lr = 0.001
I1220 16:07:19.072198 3961783232 solver.cpp:228] Iteration 500, loss = 0.364943
I1220 16:07:19.248428 3961783232 solver.cpp:244] Train net output #0: loss = 0.364943 (* 1 = 0.364943 loss)
I1220 16:07:19.248446 3961783232 sgd_solver.cpp:106] Iteration 500, lr = 0.001
I1220 16:08:25.956595 3961783232 solver.cpp:228] Iteration 600, loss = 0.563631
I1220 16:08:25.994578 3961783232 solver.cpp:244] Train net output #0: loss = 0.563631 (* 1 = 0.563631 loss)
I1220 16:08:25.994598 3961783232 sgd_solver.cpp:106] Iteration 600, lr = 0.001
I1220 16:09:33.227460 3961783232 solver.cpp:228] Iteration 700, loss = 0.435542
I1220 16:09:33.262809 3961783232 solver.cpp:244] Train net output #0: loss = 0.435542 (* 1 = 0.435542 loss)
I1220 16:09:33.262828 3961783232 sgd_solver.cpp:106] Iteration 700, lr = 0.001
I1220 16:10:39.995622 3961783232 solver.cpp:228] Iteration 800, loss = 0.462125
I1220 16:10:40.030962 3961783232 solver.cpp:244] Train net output #0: loss = 0.462125 (* 1 = 0.462125 loss)
I1220 16:10:40.030982 3961783232 sgd_solver.cpp:106] Iteration 800, lr = 0.001
I1220 16:11:46.831374 3961783232 solver.cpp:228] Iteration 900, loss = 0.288981
I1220 16:11:46.865778 3961783232 solver.cpp:244] Train net output #0: loss = 0.288981 (* 1 = 0.288981 loss)
I1220 16:11:46.865797 3961783232 sgd_solver.cpp:106] Iteration 900, lr = 0.001
I1220 16:12:53.087273 3961783232 solver.cpp:454] Snapshotting to binary proto file snapshots/snap_iter_1000.caffemodel
I1220 16:12:53.213176 3961783232 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap_iter_1000.solverstate
I1220 16:12:53.353689 3961783232 solver.cpp:337] Iteration 1000, Testing net (#0)
I1220 16:12:53.353739 3961783232 net.cpp:693] Ignoring source layer drop1
I1220 16:12:53.353745 3961783232 net.cpp:693] Ignoring source layer prob
I1220 16:13:33.481420 3961783232 solver.cpp:404] Test net output #0: accuracy = 0.73355
I1220 16:13:34.443229 3961783232 solver.cpp:228] Iteration 1000, loss = 0.403762
I1220 16:13:34.443274 3961783232 solver.cpp:244] Train net output #0: loss = 0.403762 (* 1 = 0.403762 loss)
I1220 16:13:34.443290 3961783232 sgd_solver.cpp:106] Iteration 1000, lr = 0.001
I1220 16:14:41.599465 3961783232 solver.cpp:228] Iteration 1100, loss = 0.342824
I1220 16:14:41.614086 3961783232 solver.cpp:244] Train net output #0: loss = 0.342824 (* 1 = 0.342824 loss)
I1220 16:14:41.614105 3961783232 sgd_solver.cpp:106] Iteration 1100, lr = 0.001
I1220 16:15:50.685022 3961783232 solver.cpp:228] Iteration 1200, loss = 0.324328
I1220 16:15:50.704488 3961783232 solver.cpp:244] Train net output #0: loss = 0.324328 (* 1 = 0.324328 loss)
I1220 16:15:50.704507 3961783232 sgd_solver.cpp:106] Iteration 1200, lr = 0.001
I1220 16:16:58.464282 3961783232 solver.cpp:228] Iteration 1300, loss = 0.336664
I1220 16:16:58.505964 3961783232 solver.cpp:244] Train net output #0: loss = 0.336664 (* 1 = 0.336664 loss)
I1220 16:16:58.505982 3961783232 sgd_solver.cpp:106] Iteration 1300, lr = 0.001
I1220 16:18:07.848482 3961783232 solver.cpp:228] Iteration 1400, loss = 0.35223
I1220 16:18:07.885215 3961783232 solver.cpp:244] Train net output #0: loss = 0.35223 (* 1 = 0.35223 loss)
I1220 16:18:07.885234 3961783232 sgd_solver.cpp:106] Iteration 1400, lr = 0.001
I1220 16:19:21.229821 3961783232 solver.cpp:228] Iteration 1500, loss = 0.336601
I1220 16:19:21.242239 3961783232 solver.cpp:244] Train net output #0: loss = 0.336601 (* 1 = 0.336601 loss)
I1220 16:19:21.242257 3961783232 sgd_solver.cpp:106] Iteration 1500, lr = 0.001
I1220 16:20:40.045964 3961783232 solver.cpp:228] Iteration 1600, loss = 0.283389
I1220 16:20:40.046031 3961783232 solver.cpp:244] Train net output #0: loss = 0.283389 (* 1 = 0.283389 loss)
I1220 16:20:40.046046 3961783232 sgd_solver.cpp:106] Iteration 1600, lr = 0.001
I1220 16:22:07.351843 3961783232 solver.cpp:228] Iteration 1700, loss = 0.206048
I1220 16:22:07.351949 3961783232 solver.cpp:244] Train net output #0: loss = 0.206048 (* 1 = 0.206048 loss)
I1220 16:22:07.352000 3961783232 sgd_solver.cpp:106] Iteration 1700, lr = 0.001
I1220 16:23:40.254981 3961783232 solver.cpp:228] Iteration 1800, loss = 0.297753
I1220 16:23:40.255043 3961783232 solver.cpp:244] Train net output #0: loss = 0.297753 (* 1 = 0.297753 loss)
I1220 16:23:40.255054 3961783232 sgd_solver.cpp:106] Iteration 1800, lr = 0.001
I1220 16:25:23.468340 3961783232 solver.cpp:228] Iteration 1900, loss = 0.294584
I1220 16:25:23.472846 3961783232 solver.cpp:244] Train net output #0: loss = 0.294584 (* 1 = 0.294584 loss)
I1220 16:25:23.472864 3961783232 sgd_solver.cpp:106] Iteration 1900, lr = 0.001
I1220 16:27:15.538197 3961783232 solver.cpp:454] Snapshotting to binary proto file snapshots/snap_iter_2000.caffemodel
I1220 16:27:15.653337 3961783232 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap_iter_2000.solverstate
I1220 16:27:15.777484 3961783232 solver.cpp:337] Iteration 2000, Testing net (#0)
I1220 16:27:15.777534 3961783232 net.cpp:693] Ignoring source layer drop1
I1220 16:27:15.777539 3961783232 net.cpp:693] Ignoring source layer prob
I1220 16:28:30.435839 3961783232 solver.cpp:404] Test net output #0: accuracy = 0.69595
I1220 16:28:31.781529 3961783232 solver.cpp:228] Iteration 2000, loss = 0.287034
I1220 16:28:31.781575 3961783232 solver.cpp:244] Train net output #0: loss = 0.287035 (* 1 = 0.287035 loss)
I1220 16:28:31.781585 3961783232 sgd_solver.cpp:106] Iteration 2000, lr = 0.001
I1220 16:30:27.655843 3961783232 solver.cpp:228] Iteration 2100, loss = 0.340174
I1220 16:30:27.655907 3961783232 solver.cpp:244] Train net output #0: loss = 0.340174 (* 1 = 0.340174 loss)
I1220 16:30:27.655918 3961783232 sgd_solver.cpp:106] Iteration 2100, lr = 0.001
I1220 16:32:30.761083 3961783232 solver.cpp:228] Iteration 2200, loss = 0.315221
I1220 16:32:30.793409 3961783232 solver.cpp:244] Train net output #0: loss = 0.315222 (* 1 = 0.315222 loss)
I1220 16:32:30.793428 3961783232 sgd_solver.cpp:106] Iteration 2200, lr = 0.001
I1220 16:34:35.541036 3961783232 solver.cpp:228] Iteration 2300, loss = 0.266084
I1220 16:34:35.651686 3961783232 solver.cpp:244] Train net output #0: loss = 0.266084 (* 1 = 0.266084 loss)
I1220 16:34:35.651705 3961783232 sgd_solver.cpp:106] Iteration 2300, lr = 0.001
I1220 16:36:39.239400 3961783232 solver.cpp:228] Iteration 2400, loss = 0.241843
I1220 16:36:39.239467 3961783232 solver.cpp:244] Train net output #0: loss = 0.241843 (* 1 = 0.241843 loss)
I1220 16:36:39.239478 3961783232 sgd_solver.cpp:106] Iteration 2400, lr = 0.001
I1220 16:38:42.881929 3961783232 solver.cpp:228] Iteration 2500, loss = 0.322171
I1220 16:38:42.881992 3961783232 solver.cpp:244] Train net output #0: loss = 0.322171 (* 1 = 0.322171 loss)
I1220 16:38:42.882002 3961783232 sgd_solver.cpp:106] Iteration 2500, lr = 0.001
I1220 16:40:48.792043 3961783232 solver.cpp:228] Iteration 2600, loss = 0.359087
I1220 16:40:48.792096 3961783232 solver.cpp:244] Train net output #0: loss = 0.359087 (* 1 = 0.359087 loss)
I1220 16:40:48.792105 3961783232 sgd_solver.cpp:106] Iteration 2600, lr = 0.001
I1220 16:43:09.588567 3961783232 solver.cpp:228] Iteration 2700, loss = 0.303999
I1220 16:43:09.629714 3961783232 solver.cpp:244] Train net output #0: loss = 0.303999 (* 1 = 0.303999 loss)
I1220 16:43:09.629729 3961783232 sgd_solver.cpp:106] Iteration 2700, lr = 0.001
I1220 16:44:56.297672 3961783232 solver.cpp:228] Iteration 2800, loss = 0.244791
I1220 16:44:56.332396 3961783232 solver.cpp:244] Train net output #0: loss = 0.244791 (* 1 = 0.244791 loss)
I1220 16:44:56.332420 3961783232 sgd_solver.cpp:106] Iteration 2800, lr = 0.001
I1220 16:46:38.346890 3961783232 solver.cpp:228] Iteration 2900, loss = 0.285214
I1220 16:46:38.346957 3961783232 solver.cpp:244] Train net output #0: loss = 0.285214 (* 1 = 0.285214 loss)
I1220 16:46:38.346967 3961783232 sgd_solver.cpp:106] Iteration 2900, lr = 0.001
I1220 16:48:21.897138 3961783232 solver.cpp:454] Snapshotting to binary proto file snapshots/snap_iter_3000.caffemodel
I1220 16:48:22.018883 3961783232 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap_iter_3000.solverstate
I1220 16:48:22.254238 3961783232 solver.cpp:337] Iteration 3000, Testing net (#0)
I1220 16:48:22.254287 3961783232 net.cpp:693] Ignoring source layer drop1
I1220 16:48:22.254293 3961783232 net.cpp:693] Ignoring source layer prob
I1220 16:49:27.635763 3961783232 solver.cpp:404] Test net output #0: accuracy = 0.74005
I1220 16:49:28.861354 3961783232 solver.cpp:228] Iteration 3000, loss = 0.315396
I1220 16:49:28.861399 3961783232 solver.cpp:244] Train net output #0: loss = 0.315396 (* 1 = 0.315396 loss)
I1220 16:49:28.861409 3961783232 sgd_solver.cpp:106] Iteration 3000, lr = 0.001
I1220 16:51:05.618949 3961783232 solver.cpp:228] Iteration 3100, loss = 0.305259
I1220 16:51:05.653712 3961783232 solver.cpp:244] Train net output #0: loss = 0.305259 (* 1 = 0.305259 loss)
I1220 16:51:05.653730 3961783232 sgd_solver.cpp:106] Iteration 3100, lr = 0.001
I1220 16:52:46.814931 3961783232 solver.cpp:228] Iteration 3200, loss = 0.207979
I1220 16:52:46.855979 3961783232 solver.cpp:244] Train net output #0: loss = 0.207979 (* 1 = 0.207979 loss)
I1220 16:52:46.855994 3961783232 sgd_solver.cpp:106] Iteration 3200, lr = 0.001
I1220 16:54:33.020216 3961783232 solver.cpp:228] Iteration 3300, loss = 0.360284
I1220 16:54:33.058470 3961783232 solver.cpp:244] Train net output #0: loss = 0.360284 (* 1 = 0.360284 loss)
I1220 16:54:33.058486 3961783232 sgd_solver.cpp:106] Iteration 3300, lr = 0.001
I1220 16:56:20.872287 3961783232 solver.cpp:228] Iteration 3400, loss = 0.223703
I1220 16:56:20.905514 3961783232 solver.cpp:244] Train net output #0: loss = 0.223703 (* 1 = 0.223703 loss)
I1220 16:56:20.905530 3961783232 sgd_solver.cpp:106] Iteration 3400, lr = 0.001
I1220 16:58:14.797611 3961783232 solver.cpp:228] Iteration 3500, loss = 0.373742
I1220 16:58:14.830529 3961783232 solver.cpp:244] Train net output #0: loss = 0.373742 (* 1 = 0.373742 loss)
I1220 16:58:14.830548 3961783232 sgd_solver.cpp:106] Iteration 3500, lr = 0.001
I1220 17:00:02.986588 3961783232 solver.cpp:228] Iteration 3600, loss = 0.250635
I1220 17:00:03.022179 3961783232 solver.cpp:244] Train net output #0: loss = 0.250635 (* 1 = 0.250635 loss)
I1220 17:00:03.022203 3961783232 sgd_solver.cpp:106] Iteration 3600, lr = 0.001
I1220 17:01:58.195987 3961783232 solver.cpp:228] Iteration 3700, loss = 0.296015
I1220 17:01:58.196054 3961783232 solver.cpp:244] Train net output #0: loss = 0.296015 (* 1 = 0.296015 loss)
I1220 17:01:58.196066 3961783232 sgd_solver.cpp:106] Iteration 3700, lr = 0.001
I1220 17:03:51.661790 3961783232 solver.cpp:228] Iteration 3800, loss = 0.126588
I1220 17:03:51.661859 3961783232 solver.cpp:244] Train net output #0: loss = 0.126588 (* 1 = 0.126588 loss)
I1220 17:03:51.661871 3961783232 sgd_solver.cpp:106] Iteration 3800, lr = 0.001
I1220 17:05:43.833685 3961783232 solver.cpp:228] Iteration 3900, loss = 0.281342
I1220 17:05:43.833741 3961783232 solver.cpp:244] Train net output #0: loss = 0.281342 (* 1 = 0.281342 loss)
I1220 17:05:43.833752 3961783232 sgd_solver.cpp:106] Iteration 3900, lr = 0.001
I1220 17:07:47.752544 3961783232 solver.cpp:454] Snapshotting to binary proto file snapshots/snap_iter_4000.caffemodel
I1220 17:07:49.039006 3961783232 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap_iter_4000.solverstate
I1220 17:07:49.482309 3961783232 solver.cpp:337] Iteration 4000, Testing net (#0)
I1220 17:07:49.482439 3961783232 net.cpp:693] Ignoring source layer drop1
I1220 17:07:49.482447 3961783232 net.cpp:693] Ignoring source layer prob
I1220 17:09:03.385269 3961783232 solver.cpp:404] Test net output #0: accuracy = 0.712
I1220 17:09:04.814925 3961783232 solver.cpp:228] Iteration 4000, loss = 0.287738
I1220 17:09:04.814970 3961783232 solver.cpp:244] Train net output #0: loss = 0.287738 (* 1 = 0.287738 loss)
I1220 17:09:04.814980 3961783232 sgd_solver.cpp:106] Iteration 4000, lr = 0.001
I1220 17:10:54.916738 3961783232 solver.cpp:228] Iteration 4100, loss = 0.236205
I1220 17:10:54.929883 3961783232 solver.cpp:244] Train net output #0: loss = 0.236205 (* 1 = 0.236205 loss)
I1220 17:10:54.929898 3961783232 sgd_solver.cpp:106] Iteration 4100, lr = 0.001
I1220 17:12:40.941357 3961783232 solver.cpp:228] Iteration 4200, loss = 0.255438
I1220 17:12:40.976902 3961783232 solver.cpp:244] Train net output #0: loss = 0.255438 (* 1 = 0.255438 loss)
I1220 17:12:40.976919 3961783232 sgd_solver.cpp:106] Iteration 4200, lr = 0.001
I1220 17:14:26.352125 3961783232 solver.cpp:228] Iteration 4300, loss = 0.238832
I1220 17:14:26.390461 3961783232 solver.cpp:244] Train net output #0: loss = 0.238832 (* 1 = 0.238832 loss)
I1220 17:14:26.390503 3961783232 sgd_solver.cpp:106] Iteration 4300, lr = 0.001
I1220 17:16:19.268808 3961783232 solver.cpp:228] Iteration 4400, loss = 0.269056
I1220 17:16:19.268874 3961783232 solver.cpp:244] Train net output #0: loss = 0.269056 (* 1 = 0.269056 loss)
I1220 17:16:19.268885 3961783232 sgd_solver.cpp:106] Iteration 4400, lr = 0.001
I1220 17:18:08.231770 3961783232 solver.cpp:228] Iteration 4500, loss = 0.203937
I1220 17:18:08.231835 3961783232 solver.cpp:244] Train net output #0: loss = 0.203937 (* 1 = 0.203937 loss)
I1220 17:18:08.231847 3961783232 sgd_solver.cpp:106] Iteration 4500, lr = 0.001
I1220 17:20:00.760798 3961783232 solver.cpp:228] Iteration 4600, loss = 0.26107
I1220 17:20:00.798045 3961783232 solver.cpp:244] Train net output #0: loss = 0.26107 (* 1 = 0.26107 loss)
I1220 17:20:00.798070 3961783232 sgd_solver.cpp:106] Iteration 4600, lr = 0.001
I1220 17:21:51.425652 3961783232 solver.cpp:228] Iteration 4700, loss = 0.21177
I1220 17:21:51.711822 3961783232 solver.cpp:244] Train net output #0: loss = 0.21177 (* 1 = 0.21177 loss)
I1220 17:21:51.711840 3961783232 sgd_solver.cpp:106] Iteration 4700, lr = 0.001
I1220 17:23:46.376935 3961783232 solver.cpp:228] Iteration 4800, loss = 0.201618
I1220 17:23:46.414445 3961783232 solver.cpp:244] Train net output #0: loss = 0.201619 (* 1 = 0.201619 loss)
I1220 17:23:46.414464 3961783232 sgd_solver.cpp:106] Iteration 4800, lr = 0.001
I1220 17:25:39.373245 3961783232 solver.cpp:228] Iteration 4900, loss = 0.211392
I1220 17:25:39.373314 3961783232 solver.cpp:244] Train net output #0: loss = 0.211392 (* 1 = 0.211392 loss)
I1220 17:25:39.373325 3961783232 sgd_solver.cpp:106] Iteration 4900, lr = 0.001
I1220 17:27:26.207053 3961783232 solver.cpp:454] Snapshotting to binary proto file snapshots/snap_iter_5000.caffemodel
I1220 17:27:26.300740 3961783232 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap_iter_5000.solverstate
I1220 17:27:26.447402 3961783232 solver.cpp:337] Iteration 5000, Testing net (#0)
I1220 17:27:26.447450 3961783232 net.cpp:693] Ignoring source layer drop1
I1220 17:27:26.447458 3961783232 net.cpp:693] Ignoring source layer prob
I1220 17:28:44.911473 3961783232 solver.cpp:404] Test net output #0: accuracy = 0.7587
I1220 17:28:46.237709 3961783232 solver.cpp:228] Iteration 5000, loss = 0.268529
I1220 17:28:46.237759 3961783232 solver.cpp:244] Train net output #0: loss = 0.268529 (* 1 = 0.268529 loss)
I1220 17:28:46.237771 3961783232 sgd_solver.cpp:106] Iteration 5000, lr = 0.001
I1220 17:30:28.341125 3961783232 solver.cpp:228] Iteration 5100, loss = 0.157862
I1220 17:30:28.342308 3961783232 solver.cpp:244] Train net output #0: loss = 0.157863 (* 1 = 0.157863 loss)
I1220 17:30:28.342320 3961783232 sgd_solver.cpp:106] Iteration 5100, lr = 0.001
I1220 17:32:11.663182 3961783232 solver.cpp:228] Iteration 5200, loss = 0.175509
I1220 17:32:11.663240 3961783232 solver.cpp:244] Train net output #0: loss = 0.175509 (* 1 = 0.175509 loss)
I1220 17:32:11.663249 3961783232 sgd_solver.cpp:106] Iteration 5200, lr = 0.001
I1220 17:33:54.545923 3961783232 solver.cpp:228] Iteration 5300, loss = 0.243165
I1220 17:33:54.545987 3961783232 solver.cpp:244] Train net output #0: loss = 0.243165 (* 1 = 0.243165 loss)
I1220 17:33:54.545997 3961783232 sgd_solver.cpp:106] Iteration 5300, lr = 0.001
I1220 17:35:38.324753 3961783232 solver.cpp:228] Iteration 5400, loss = 0.221383
I1220 17:35:38.324826 3961783232 solver.cpp:244] Train net output #0: loss = 0.221384 (* 1 = 0.221384 loss)
I1220 17:35:38.324837 3961783232 sgd_solver.cpp:106] Iteration 5400, lr = 0.001
I1220 17:37:22.848336 3961783232 solver.cpp:228] Iteration 5500, loss = 0.283
I1220 17:37:22.848393 3961783232 solver.cpp:244] Train net output #0: loss = 0.283 (* 1 = 0.283 loss)
I1220 17:37:22.848402 3961783232 sgd_solver.cpp:106] Iteration 5500, lr = 0.001
I1220 17:39:08.384093 3961783232 solver.cpp:228] Iteration 5600, loss = 0.127982
I1220 17:39:08.384155 3961783232 solver.cpp:244] Train net output #0: loss = 0.127982 (* 1 = 0.127982 loss)
I1220 17:39:08.384166 3961783232 sgd_solver.cpp:106] Iteration 5600, lr = 0.001
I1220 17:40:54.923861 3961783232 solver.cpp:228] Iteration 5700, loss = 0.289218
I1220 17:40:54.923928 3961783232 solver.cpp:244] Train net output #0: loss = 0.289218 (* 1 = 0.289218 loss)
I1220 17:40:54.923940 3961783232 sgd_solver.cpp:106] Iteration 5700, lr = 0.001
I1220 17:42:43.998044 3961783232 solver.cpp:228] Iteration 5800, loss = 0.23577
I1220 17:42:43.998100 3961783232 solver.cpp:244] Train net output #0: loss = 0.23577 (* 1 = 0.23577 loss)
I1220 17:42:43.998111 3961783232 sgd_solver.cpp:106] Iteration 5800, lr = 0.001
I1220 17:44:33.126370 3961783232 solver.cpp:228] Iteration 5900, loss = 0.199438
I1220 17:44:33.126433 3961783232 solver.cpp:244] Train net output #0: loss = 0.199439 (* 1 = 0.199439 loss)
I1220 17:44:33.126444 3961783232 sgd_solver.cpp:106] Iteration 5900, lr = 0.001
I1220 17:46:17.429034 3961783232 solver.cpp:454] Snapshotting to binary proto file snapshots/snap_iter_6000.caffemodel
I1220 17:46:17.760511 3961783232 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap_iter_6000.solverstate
I1220 17:46:17.914216 3961783232 solver.cpp:337] Iteration 6000, Testing net (#0)
I1220 17:46:17.914264 3961783232 net.cpp:693] Ignoring source layer drop1
I1220 17:46:17.914271 3961783232 net.cpp:693] Ignoring source layer prob
I1220 17:47:23.261438 3961783232 solver.cpp:404] Test net output #0: accuracy = 0.7848
I1220 17:47:24.435122 3961783232 solver.cpp:228] Iteration 6000, loss = 0.170987
I1220 17:47:24.435168 3961783232 solver.cpp:244] Train net output #0: loss = 0.170987 (* 1 = 0.170987 loss)
I1220 17:47:24.435178 3961783232 sgd_solver.cpp:106] Iteration 6000, lr = 0.001
I1220 17:49:00.963181 3961783232 solver.cpp:228] Iteration 6100, loss = 0.187055
I1220 17:49:00.963239 3961783232 solver.cpp:244] Train net output #0: loss = 0.187056 (* 1 = 0.187056 loss)
I1220 17:49:00.963250 3961783232 sgd_solver.cpp:106] Iteration 6100, lr = 0.001
I1220 17:50:38.820379 3961783232 solver.cpp:228] Iteration 6200, loss = 0.171604
I1220 17:50:38.820435 3961783232 solver.cpp:244] Train net output #0: loss = 0.171604 (* 1 = 0.171604 loss)
I1220 17:50:38.820444 3961783232 sgd_solver.cpp:106] Iteration 6200, lr = 0.001
I1220 17:52:20.177582 3961783232 solver.cpp:228] Iteration 6300, loss = 0.284963
I1220 17:52:20.213486 3961783232 solver.cpp:244] Train net output #0: loss = 0.284964 (* 1 = 0.284964 loss)
I1220 17:52:20.213505 3961783232 sgd_solver.cpp:106] Iteration 6300, lr = 0.001
I1220 17:54:01.820814 3961783232 solver.cpp:228] Iteration 6400, loss = 0.213157
I1220 17:54:01.860599 3961783232 solver.cpp:244] Train net output #0: loss = 0.213158 (* 1 = 0.213158 loss)
I1220 17:54:01.860618 3961783232 sgd_solver.cpp:106] Iteration 6400, lr = 0.001
I1220 17:55:47.979395 3961783232 solver.cpp:228] Iteration 6500, loss = 0.274562
I1220 17:55:48.018868 3961783232 solver.cpp:244] Train net output #0: loss = 0.274562 (* 1 = 0.274562 loss)
I1220 17:55:48.018885 3961783232 sgd_solver.cpp:106] Iteration 6500, lr = 0.001
I1220 17:57:30.841748 3961783232 solver.cpp:228] Iteration 6600, loss = 0.242342
I1220 17:57:30.877046 3961783232 solver.cpp:244] Train net output #0: loss = 0.242343 (* 1 = 0.242343 loss)
I1220 17:57:30.877065 3961783232 sgd_solver.cpp:106] Iteration 6600, lr = 0.001
I1220 17:59:16.176473 3961783232 solver.cpp:228] Iteration 6700, loss = 0.320463
I1220 17:59:16.457530 3961783232 solver.cpp:244] Train net output #0: loss = 0.320463 (* 1 = 0.320463 loss)
I1220 17:59:16.457550 3961783232 sgd_solver.cpp:106] Iteration 6700, lr = 0.001
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment