Skip to content

Instantly share code, notes, and snippets.

@Luonic
Last active November 12, 2016 21:12
Show Gist options
  • Save Luonic/70c5f56b61dcf9cd75dd457a4fc0a2ed to your computer and use it in GitHub Desktop.
Save Luonic/70c5f56b61dcf9cd75dd457a4fc0a2ed to your computer and use it in GitHub Desktop.
I1112 07:17:41.890250 17193 solver.cpp:337] Iteration 0, Testing net (#0)
I1112 07:17:41.896697 17193 net.cpp:693] Ignoring source layer drop1
I1112 07:17:41.901717 17193 net.cpp:693] Ignoring source layer prob
I1112 07:17:49.161095 17193 solver.cpp:404] Test net output #0: accuracy = 0.02056
I1112 07:17:49.283001 17193 solver.cpp:228] Iteration 0, loss = 5.03651
I1112 07:17:49.283051 17193 solver.cpp:244] Train net output #0: loss = 5.03651 (* 1 = 5.03651 loss)
I1112 07:17:49.283078 17193 sgd_solver.cpp:106] Iteration 0, lr = 0.01
I1112 07:19:59.706967 17193 solver.cpp:228] Iteration 1000, loss = 1.17764
I1112 07:19:59.707039 17193 solver.cpp:244] Train net output #0: loss = 1.17765 (* 1 = 1.17765 loss)
I1112 07:19:59.707053 17193 sgd_solver.cpp:106] Iteration 1000, lr = 0.000187328
I1112 07:22:10.137840 17193 solver.cpp:228] Iteration 2000, loss = 0.696419
I1112 07:22:10.138025 17193 solver.cpp:244] Train net output #0: loss = 0.69642 (* 1 = 0.69642 loss)
I1112 07:22:10.138043 17193 sgd_solver.cpp:106] Iteration 2000, lr = 0.000111594
I1112 07:24:20.554947 17193 solver.cpp:228] Iteration 3000, loss = 0.669033
I1112 07:24:20.555074 17193 solver.cpp:244] Train net output #0: loss = 0.669034 (* 1 = 0.669034 loss)
I1112 07:24:20.555091 17193 sgd_solver.cpp:106] Iteration 3000, lr = 8.23842e-05
I1112 07:26:30.972342 17193 solver.cpp:228] Iteration 4000, loss = 0.416319
I1112 07:26:30.972483 17193 solver.cpp:244] Train net output #0: loss = 0.41632 (* 1 = 0.41632 loss)
I1112 07:26:30.972494 17193 sgd_solver.cpp:106] Iteration 4000, lr = 6.64164e-05
I1112 07:28:41.274926 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_5000.caffemodel
I1112 07:28:50.852340 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_5000.solverstate
I1112 07:28:51.019891 17193 solver.cpp:337] Iteration 5000, Testing net (#0)
I1112 07:28:51.019948 17193 net.cpp:693] Ignoring source layer drop1
I1112 07:28:51.019956 17193 net.cpp:693] Ignoring source layer prob
I1112 07:28:58.222630 17193 solver.cpp:404] Test net output #0: accuracy = 0.93048
I1112 07:28:58.259209 17193 solver.cpp:228] Iteration 5000, loss = 0.322317
I1112 07:28:58.259263 17193 solver.cpp:244] Train net output #0: loss = 0.322318 (* 1 = 0.322318 loss)
I1112 07:28:58.259276 17193 sgd_solver.cpp:106] Iteration 5000, lr = 5.6192e-05
I1112 07:31:08.661331 17193 solver.cpp:228] Iteration 6000, loss = 0.19025
I1112 07:31:08.661449 17193 solver.cpp:244] Train net output #0: loss = 0.190251 (* 1 = 0.190251 loss)
I1112 07:31:08.661465 17193 sgd_solver.cpp:106] Iteration 6000, lr = 4.90165e-05
I1112 07:33:19.080974 17193 solver.cpp:228] Iteration 7000, loss = 0.164357
I1112 07:33:19.081104 17193 solver.cpp:244] Train net output #0: loss = 0.164358 (* 1 = 0.164358 loss)
I1112 07:33:19.081120 17193 sgd_solver.cpp:106] Iteration 7000, lr = 4.36688e-05
I1112 07:35:29.481665 17193 solver.cpp:228] Iteration 8000, loss = 0.133433
I1112 07:35:29.481739 17193 solver.cpp:244] Train net output #0: loss = 0.133434 (* 1 = 0.133434 loss)
I1112 07:35:29.481753 17193 sgd_solver.cpp:106] Iteration 8000, lr = 3.951e-05
I1112 07:37:39.918493 17193 solver.cpp:228] Iteration 9000, loss = 0.132508
I1112 07:37:39.918571 17193 solver.cpp:244] Train net output #0: loss = 0.132509 (* 1 = 0.132509 loss)
I1112 07:37:39.918586 17193 sgd_solver.cpp:106] Iteration 9000, lr = 3.61714e-05
I1112 07:39:50.224310 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_10000.caffemodel
I1112 07:40:05.595932 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_10000.solverstate
I1112 07:40:05.745854 17193 solver.cpp:337] Iteration 10000, Testing net (#0)
I1112 07:40:05.745901 17193 net.cpp:693] Ignoring source layer drop1
I1112 07:40:05.745934 17193 net.cpp:693] Ignoring source layer prob
I1112 07:40:12.960891 17193 solver.cpp:404] Test net output #0: accuracy = 0.97712
I1112 07:40:12.995628 17193 solver.cpp:228] Iteration 10000, loss = 0.229462
I1112 07:40:12.995678 17193 solver.cpp:244] Train net output #0: loss = 0.229463 (* 1 = 0.229463 loss)
I1112 07:40:12.995694 17193 sgd_solver.cpp:106] Iteration 10000, lr = 3.34245e-05
I1112 07:42:23.409602 17193 solver.cpp:228] Iteration 11000, loss = 0.206915
I1112 07:42:23.409744 17193 solver.cpp:244] Train net output #0: loss = 0.206916 (* 1 = 0.206916 loss)
I1112 07:42:23.409757 17193 sgd_solver.cpp:106] Iteration 11000, lr = 3.11197e-05
I1112 07:44:33.804935 17193 solver.cpp:228] Iteration 12000, loss = 0.103708
I1112 07:44:33.805079 17193 solver.cpp:244] Train net output #0: loss = 0.10371 (* 1 = 0.10371 loss)
I1112 07:44:33.805093 17193 sgd_solver.cpp:106] Iteration 12000, lr = 2.91545e-05
I1112 07:46:44.204833 17193 solver.cpp:228] Iteration 13000, loss = 0.0349696
I1112 07:46:44.204955 17193 solver.cpp:244] Train net output #0: loss = 0.0349711 (* 1 = 0.0349711 loss)
I1112 07:46:44.204970 17193 sgd_solver.cpp:106] Iteration 13000, lr = 2.74565e-05
I1112 07:48:54.609351 17193 solver.cpp:228] Iteration 14000, loss = 0.0794354
I1112 07:48:54.609424 17193 solver.cpp:244] Train net output #0: loss = 0.079437 (* 1 = 0.079437 loss)
I1112 07:48:54.609436 17193 sgd_solver.cpp:106] Iteration 14000, lr = 2.59726e-05
I1112 07:51:04.876116 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_15000.caffemodel
I1112 07:51:05.437881 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_15000.solverstate
I1112 07:51:06.640655 17193 solver.cpp:337] Iteration 15000, Testing net (#0)
I1112 07:51:06.640708 17193 net.cpp:693] Ignoring source layer drop1
I1112 07:51:06.640717 17193 net.cpp:693] Ignoring source layer prob
I1112 07:51:13.838026 17193 solver.cpp:404] Test net output #0: accuracy = 0.98464
I1112 07:51:13.874845 17193 solver.cpp:228] Iteration 15000, loss = 0.110722
I1112 07:51:13.874896 17193 solver.cpp:244] Train net output #0: loss = 0.110723 (* 1 = 0.110723 loss)
I1112 07:51:13.874910 17193 sgd_solver.cpp:106] Iteration 15000, lr = 2.46633e-05
I1112 07:53:24.298288 17193 solver.cpp:228] Iteration 16000, loss = 0.126085
I1112 07:53:24.298444 17193 solver.cpp:244] Train net output #0: loss = 0.126087 (* 1 = 0.126087 loss)
I1112 07:53:24.298460 17193 sgd_solver.cpp:106] Iteration 16000, lr = 2.34983e-05
I1112 07:55:34.711755 17193 solver.cpp:228] Iteration 17000, loss = 0.0510434
I1112 07:55:34.711902 17193 solver.cpp:244] Train net output #0: loss = 0.051045 (* 1 = 0.051045 loss)
I1112 07:55:34.711917 17193 sgd_solver.cpp:106] Iteration 17000, lr = 2.24541e-05
I1112 07:57:45.143920 17193 solver.cpp:228] Iteration 18000, loss = 0.0825318
I1112 07:57:45.143995 17193 solver.cpp:244] Train net output #0: loss = 0.0825334 (* 1 = 0.0825334 loss)
I1112 07:57:45.144006 17193 sgd_solver.cpp:106] Iteration 18000, lr = 2.15121e-05
I1112 07:59:55.565953 17193 solver.cpp:228] Iteration 19000, loss = 0.0832459
I1112 07:59:55.566093 17193 solver.cpp:244] Train net output #0: loss = 0.0832476 (* 1 = 0.0832476 loss)
I1112 07:59:55.566107 17193 sgd_solver.cpp:106] Iteration 19000, lr = 2.06574e-05
I1112 08:02:05.872259 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_20000.caffemodel
I1112 08:02:06.349077 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_20000.solverstate
I1112 08:02:06.491251 17193 solver.cpp:337] Iteration 20000, Testing net (#0)
I1112 08:02:06.491304 17193 net.cpp:693] Ignoring source layer drop1
I1112 08:02:06.491312 17193 net.cpp:693] Ignoring source layer prob
I1112 08:02:13.691721 17193 solver.cpp:404] Test net output #0: accuracy = 0.98928
I1112 08:02:13.726101 17193 solver.cpp:228] Iteration 20000, loss = 0.0242369
I1112 08:02:13.726150 17193 solver.cpp:244] Train net output #0: loss = 0.0242386 (* 1 = 0.0242386 loss)
I1112 08:02:13.726163 17193 sgd_solver.cpp:106] Iteration 20000, lr = 1.9878e-05
I1112 08:04:24.125469 17193 solver.cpp:228] Iteration 21000, loss = 0.0179401
I1112 08:04:24.125613 17193 solver.cpp:244] Train net output #0: loss = 0.0179418 (* 1 = 0.0179418 loss)
I1112 08:04:24.125627 17193 sgd_solver.cpp:106] Iteration 21000, lr = 1.9164e-05
I1112 08:06:34.542148 17193 solver.cpp:228] Iteration 22000, loss = 0.0367586
I1112 08:06:34.542224 17193 solver.cpp:244] Train net output #0: loss = 0.0367604 (* 1 = 0.0367604 loss)
I1112 08:06:34.542237 17193 sgd_solver.cpp:106] Iteration 22000, lr = 1.8507e-05
I1112 08:08:44.938272 17193 solver.cpp:228] Iteration 23000, loss = 0.0225611
I1112 08:08:44.938367 17193 solver.cpp:244] Train net output #0: loss = 0.0225629 (* 1 = 0.0225629 loss)
I1112 08:08:44.938380 17193 sgd_solver.cpp:106] Iteration 23000, lr = 1.79003e-05
I1112 08:10:55.337188 17193 solver.cpp:228] Iteration 24000, loss = 0.0416818
I1112 08:10:55.337265 17193 solver.cpp:244] Train net output #0: loss = 0.0416836 (* 1 = 0.0416836 loss)
I1112 08:10:55.337276 17193 sgd_solver.cpp:106] Iteration 24000, lr = 1.73381e-05
I1112 08:13:05.625404 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_25000.caffemodel
I1112 08:13:06.125607 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_25000.solverstate
I1112 08:13:06.645081 17193 solver.cpp:337] Iteration 25000, Testing net (#0)
I1112 08:13:06.645134 17193 net.cpp:693] Ignoring source layer drop1
I1112 08:13:06.645144 17193 net.cpp:693] Ignoring source layer prob
I1112 08:13:13.835492 17193 solver.cpp:404] Test net output #0: accuracy = 0.99328
I1112 08:13:13.869546 17193 solver.cpp:228] Iteration 25000, loss = 0.0595944
I1112 08:13:13.869596 17193 solver.cpp:244] Train net output #0: loss = 0.0595962 (* 1 = 0.0595962 loss)
I1112 08:13:13.869609 17193 sgd_solver.cpp:106] Iteration 25000, lr = 1.68154e-05
I1112 08:15:24.286114 17193 solver.cpp:228] Iteration 26000, loss = 0.127027
I1112 08:15:24.286236 17193 solver.cpp:244] Train net output #0: loss = 0.127029 (* 1 = 0.127029 loss)
I1112 08:15:24.286250 17193 sgd_solver.cpp:106] Iteration 26000, lr = 1.63281e-05
I1112 08:17:34.690212 17193 solver.cpp:228] Iteration 27000, loss = 0.00708207
I1112 08:17:34.690328 17193 solver.cpp:244] Train net output #0: loss = 0.00708402 (* 1 = 0.00708402 loss)
I1112 08:17:34.690341 17193 sgd_solver.cpp:106] Iteration 27000, lr = 1.58725e-05
I1112 08:19:45.100325 17193 solver.cpp:228] Iteration 28000, loss = 0.025895
I1112 08:19:45.100450 17193 solver.cpp:244] Train net output #0: loss = 0.0258969 (* 1 = 0.0258969 loss)
I1112 08:19:45.100466 17193 sgd_solver.cpp:106] Iteration 28000, lr = 1.54455e-05
I1112 08:21:55.505355 17193 solver.cpp:228] Iteration 29000, loss = 0.0164592
I1112 08:21:55.505441 17193 solver.cpp:244] Train net output #0: loss = 0.0164611 (* 1 = 0.0164611 loss)
I1112 08:21:55.505453 17193 sgd_solver.cpp:106] Iteration 29000, lr = 1.50443e-05
I1112 08:24:05.777113 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_30000.caffemodel
I1112 08:24:40.955708 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_30000.solverstate
I1112 08:24:41.119065 17193 solver.cpp:337] Iteration 30000, Testing net (#0)
I1112 08:24:41.119114 17193 net.cpp:693] Ignoring source layer drop1
I1112 08:24:41.119134 17193 net.cpp:693] Ignoring source layer prob
I1112 08:24:48.340046 17193 solver.cpp:404] Test net output #0: accuracy = 0.9932
I1112 08:24:48.374820 17193 solver.cpp:228] Iteration 30000, loss = 0.0249928
I1112 08:24:48.374873 17193 solver.cpp:244] Train net output #0: loss = 0.0249948 (* 1 = 0.0249948 loss)
I1112 08:24:48.374888 17193 sgd_solver.cpp:106] Iteration 30000, lr = 1.46667e-05
I1112 08:26:58.790920 17193 solver.cpp:228] Iteration 31000, loss = 0.160548
I1112 08:26:58.790997 17193 solver.cpp:244] Train net output #0: loss = 0.16055 (* 1 = 0.16055 loss)
I1112 08:26:58.791012 17193 sgd_solver.cpp:106] Iteration 31000, lr = 1.43105e-05
I1112 08:29:09.200445 17193 solver.cpp:228] Iteration 32000, loss = 0.0215395
I1112 08:29:09.200536 17193 solver.cpp:244] Train net output #0: loss = 0.0215413 (* 1 = 0.0215413 loss)
I1112 08:29:09.200549 17193 sgd_solver.cpp:106] Iteration 32000, lr = 1.39738e-05
I1112 08:31:19.602881 17193 solver.cpp:228] Iteration 33000, loss = 0.0146531
I1112 08:31:19.603001 17193 solver.cpp:244] Train net output #0: loss = 0.014655 (* 1 = 0.014655 loss)
I1112 08:31:19.603016 17193 sgd_solver.cpp:106] Iteration 33000, lr = 1.3655e-05
I1112 08:33:29.995241 17193 solver.cpp:228] Iteration 34000, loss = 0.0363096
I1112 08:33:29.995329 17193 solver.cpp:244] Train net output #0: loss = 0.0363116 (* 1 = 0.0363116 loss)
I1112 08:33:29.995344 17193 sgd_solver.cpp:106] Iteration 34000, lr = 1.33527e-05
I1112 08:35:40.281373 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_35000.caffemodel
I1112 08:35:41.298012 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_35000.solverstate
I1112 08:35:41.493650 17193 solver.cpp:337] Iteration 35000, Testing net (#0)
I1112 08:35:41.493703 17193 net.cpp:693] Ignoring source layer drop1
I1112 08:35:41.493712 17193 net.cpp:693] Ignoring source layer prob
I1112 08:35:48.688002 17193 solver.cpp:404] Test net output #0: accuracy = 0.99472
I1112 08:35:48.722436 17193 solver.cpp:228] Iteration 35000, loss = 0.0176381
I1112 08:35:48.722486 17193 solver.cpp:244] Train net output #0: loss = 0.0176401 (* 1 = 0.0176401 loss)
I1112 08:35:48.722501 17193 sgd_solver.cpp:106] Iteration 35000, lr = 1.30656e-05
I1112 08:37:59.133245 17193 solver.cpp:228] Iteration 36000, loss = 0.0154841
I1112 08:37:59.133317 17193 solver.cpp:244] Train net output #0: loss = 0.015486 (* 1 = 0.015486 loss)
I1112 08:37:59.133333 17193 sgd_solver.cpp:106] Iteration 36000, lr = 1.27925e-05
I1112 08:40:09.553462 17193 solver.cpp:228] Iteration 37000, loss = 0.0470804
I1112 08:40:09.553549 17193 solver.cpp:244] Train net output #0: loss = 0.0470821 (* 1 = 0.0470821 loss)
I1112 08:40:09.553565 17193 sgd_solver.cpp:106] Iteration 37000, lr = 1.25323e-05
I1112 08:42:19.991109 17193 solver.cpp:228] Iteration 38000, loss = 0.0206935
I1112 08:42:19.991261 17193 solver.cpp:244] Train net output #0: loss = 0.0206952 (* 1 = 0.0206952 loss)
I1112 08:42:19.991274 17193 sgd_solver.cpp:106] Iteration 38000, lr = 1.22842e-05
I1112 08:44:30.420471 17193 solver.cpp:228] Iteration 39000, loss = 0.0118376
I1112 08:44:30.420563 17193 solver.cpp:244] Train net output #0: loss = 0.0118393 (* 1 = 0.0118393 loss)
I1112 08:44:30.420578 17193 sgd_solver.cpp:106] Iteration 39000, lr = 1.20472e-05
I1112 08:46:40.680351 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_40000.caffemodel
I1112 08:47:05.264895 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_40000.solverstate
I1112 08:47:05.427218 17193 solver.cpp:337] Iteration 40000, Testing net (#0)
I1112 08:47:05.427274 17193 net.cpp:693] Ignoring source layer drop1
I1112 08:47:05.427284 17193 net.cpp:693] Ignoring source layer prob
I1112 08:47:12.628058 17193 solver.cpp:404] Test net output #0: accuracy = 0.99584
I1112 08:47:12.665499 17193 solver.cpp:228] Iteration 40000, loss = 0.0695327
I1112 08:47:12.665550 17193 solver.cpp:244] Train net output #0: loss = 0.0695344 (* 1 = 0.0695344 loss)
I1112 08:47:12.665565 17193 sgd_solver.cpp:106] Iteration 40000, lr = 1.18207e-05
I1112 08:49:23.098924 17193 solver.cpp:228] Iteration 41000, loss = 0.0326135
I1112 08:49:23.099020 17193 solver.cpp:244] Train net output #0: loss = 0.0326152 (* 1 = 0.0326152 loss)
I1112 08:49:23.099032 17193 sgd_solver.cpp:106] Iteration 41000, lr = 1.16038e-05
I1112 08:51:33.504154 17193 solver.cpp:228] Iteration 42000, loss = 0.0406619
I1112 08:51:33.504254 17193 solver.cpp:244] Train net output #0: loss = 0.0406636 (* 1 = 0.0406636 loss)
I1112 08:51:33.504267 17193 sgd_solver.cpp:106] Iteration 42000, lr = 1.1396e-05
I1112 08:53:43.923717 17193 solver.cpp:228] Iteration 43000, loss = 0.0245159
I1112 08:53:43.923861 17193 solver.cpp:244] Train net output #0: loss = 0.0245178 (* 1 = 0.0245178 loss)
I1112 08:53:43.923876 17193 sgd_solver.cpp:106] Iteration 43000, lr = 1.11967e-05
I1112 08:55:54.325821 17193 solver.cpp:228] Iteration 44000, loss = 0.0107809
I1112 08:55:54.325909 17193 solver.cpp:244] Train net output #0: loss = 0.0107828 (* 1 = 0.0107828 loss)
I1112 08:55:54.325924 17193 sgd_solver.cpp:106] Iteration 44000, lr = 1.10053e-05
I1112 08:58:04.604471 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_45000.caffemodel
I1112 08:58:35.298804 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_45000.solverstate
I1112 08:58:35.444377 17193 solver.cpp:337] Iteration 45000, Testing net (#0)
I1112 08:58:35.444430 17193 net.cpp:693] Ignoring source layer drop1
I1112 08:58:35.444442 17193 net.cpp:693] Ignoring source layer prob
I1112 08:58:42.636595 17193 solver.cpp:404] Test net output #0: accuracy = 0.99536
I1112 08:58:42.670956 17193 solver.cpp:228] Iteration 45000, loss = 0.0319046
I1112 08:58:42.671005 17193 solver.cpp:244] Train net output #0: loss = 0.0319065 (* 1 = 0.0319065 loss)
I1112 08:58:42.671020 17193 sgd_solver.cpp:106] Iteration 45000, lr = 1.08214e-05
I1112 09:00:53.093411 17193 solver.cpp:228] Iteration 46000, loss = 0.00533195
I1112 09:00:53.093483 17193 solver.cpp:244] Train net output #0: loss = 0.0053338 (* 1 = 0.0053338 loss)
I1112 09:00:53.093494 17193 sgd_solver.cpp:106] Iteration 46000, lr = 1.06445e-05
I1112 09:03:03.509090 17193 solver.cpp:228] Iteration 47000, loss = 0.0167692
I1112 09:03:03.509167 17193 solver.cpp:244] Train net output #0: loss = 0.016771 (* 1 = 0.016771 loss)
I1112 09:03:03.509181 17193 sgd_solver.cpp:106] Iteration 47000, lr = 1.04742e-05
I1112 09:05:13.914008 17193 solver.cpp:228] Iteration 48000, loss = 0.0141988
I1112 09:05:13.914146 17193 solver.cpp:244] Train net output #0: loss = 0.0142006 (* 1 = 0.0142006 loss)
I1112 09:05:13.914158 17193 sgd_solver.cpp:106] Iteration 48000, lr = 1.03101e-05
I1112 09:07:24.325129 17193 solver.cpp:228] Iteration 49000, loss = 0.0368493
I1112 09:07:24.325279 17193 solver.cpp:244] Train net output #0: loss = 0.0368512 (* 1 = 0.0368512 loss)
I1112 09:07:24.325294 17193 sgd_solver.cpp:106] Iteration 49000, lr = 1.01519e-05
I1112 09:09:34.616418 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_50000.caffemodel
I1112 09:10:08.319231 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_50000.solverstate
I1112 09:10:08.465332 17193 solver.cpp:337] Iteration 50000, Testing net (#0)
I1112 09:10:08.465378 17193 net.cpp:693] Ignoring source layer drop1
I1112 09:10:08.465399 17193 net.cpp:693] Ignoring source layer prob
I1112 09:10:15.664849 17193 solver.cpp:404] Test net output #0: accuracy = 0.9956
I1112 09:10:15.699282 17193 solver.cpp:228] Iteration 50000, loss = 0.0129046
I1112 09:10:15.699332 17193 solver.cpp:244] Train net output #0: loss = 0.0129065 (* 1 = 0.0129065 loss)
I1112 09:10:15.699348 17193 sgd_solver.cpp:106] Iteration 50000, lr = 9.99925e-06
I1112 09:12:26.137650 17193 solver.cpp:228] Iteration 51000, loss = 0.0151948
I1112 09:12:26.137753 17193 solver.cpp:244] Train net output #0: loss = 0.0151966 (* 1 = 0.0151966 loss)
I1112 09:12:26.137764 17193 sgd_solver.cpp:106] Iteration 51000, lr = 9.85185e-06
I1112 09:14:36.551502 17193 solver.cpp:228] Iteration 52000, loss = 0.00694739
I1112 09:14:36.551630 17193 solver.cpp:244] Train net output #0: loss = 0.00694925 (* 1 = 0.00694925 loss)
I1112 09:14:36.551643 17193 sgd_solver.cpp:106] Iteration 52000, lr = 9.70943e-06
I1112 09:16:46.962292 17193 solver.cpp:228] Iteration 53000, loss = 0.0581361
I1112 09:16:46.962364 17193 solver.cpp:244] Train net output #0: loss = 0.058138 (* 1 = 0.058138 loss)
I1112 09:16:46.962378 17193 sgd_solver.cpp:106] Iteration 53000, lr = 9.57172e-06
I1112 09:18:57.390095 17193 solver.cpp:228] Iteration 54000, loss = 0.00509106
I1112 09:18:57.390169 17193 solver.cpp:244] Train net output #0: loss = 0.00509299 (* 1 = 0.00509299 loss)
I1112 09:18:57.390182 17193 sgd_solver.cpp:106] Iteration 54000, lr = 9.43848e-06
I1112 09:21:07.676455 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_55000.caffemodel
I1112 09:21:41.568927 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_55000.solverstate
I1112 09:21:41.707314 17193 solver.cpp:337] Iteration 55000, Testing net (#0)
I1112 09:21:41.707366 17193 net.cpp:693] Ignoring source layer drop1
I1112 09:21:41.707376 17193 net.cpp:693] Ignoring source layer prob
I1112 09:21:48.909824 17193 solver.cpp:404] Test net output #0: accuracy = 0.9968
I1112 09:21:48.944203 17193 solver.cpp:228] Iteration 55000, loss = 0.0143865
I1112 09:21:48.944253 17193 solver.cpp:244] Train net output #0: loss = 0.0143885 (* 1 = 0.0143885 loss)
I1112 09:21:48.944269 17193 sgd_solver.cpp:106] Iteration 55000, lr = 9.30949e-06
I1112 09:23:59.372443 17193 solver.cpp:228] Iteration 56000, loss = 0.0490061
I1112 09:23:59.372586 17193 solver.cpp:244] Train net output #0: loss = 0.049008 (* 1 = 0.049008 loss)
I1112 09:23:59.372598 17193 sgd_solver.cpp:106] Iteration 56000, lr = 9.18454e-06
I1112 09:26:09.836683 17193 solver.cpp:228] Iteration 57000, loss = 0.00615001
I1112 09:26:09.836791 17193 solver.cpp:244] Train net output #0: loss = 0.00615201 (* 1 = 0.00615201 loss)
I1112 09:26:09.836814 17193 sgd_solver.cpp:106] Iteration 57000, lr = 9.06343e-06
I1112 09:28:20.250309 17193 solver.cpp:228] Iteration 58000, loss = 0.0483592
I1112 09:28:20.250403 17193 solver.cpp:244] Train net output #0: loss = 0.0483612 (* 1 = 0.0483612 loss)
I1112 09:28:20.250414 17193 sgd_solver.cpp:106] Iteration 58000, lr = 8.94599e-06
I1112 09:30:30.651531 17193 solver.cpp:228] Iteration 59000, loss = 0.00149275
I1112 09:30:30.651623 17193 solver.cpp:244] Train net output #0: loss = 0.00149466 (* 1 = 0.00149466 loss)
I1112 09:30:30.651633 17193 sgd_solver.cpp:106] Iteration 59000, lr = 8.83204e-06
I1112 09:32:41.297025 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_60000.caffemodel
I1112 09:32:57.334919 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_60000.solverstate
I1112 09:32:57.475343 17193 solver.cpp:337] Iteration 60000, Testing net (#0)
I1112 09:32:57.475392 17193 net.cpp:693] Ignoring source layer drop1
I1112 09:32:57.475399 17193 net.cpp:693] Ignoring source layer prob
I1112 09:33:04.681656 17193 solver.cpp:404] Test net output #0: accuracy = 0.99696
I1112 09:33:04.717983 17193 solver.cpp:228] Iteration 60000, loss = 0.0148324
I1112 09:33:04.718032 17193 solver.cpp:244] Train net output #0: loss = 0.0148343 (* 1 = 0.0148343 loss)
I1112 09:33:04.718049 17193 sgd_solver.cpp:106] Iteration 60000, lr = 8.72141e-06
I1112 09:35:15.128329 17193 solver.cpp:228] Iteration 61000, loss = 0.0273681
I1112 09:35:15.128435 17193 solver.cpp:244] Train net output #0: loss = 0.0273699 (* 1 = 0.0273699 loss)
I1112 09:35:15.128448 17193 sgd_solver.cpp:106] Iteration 61000, lr = 8.61397e-06
I1112 09:37:25.563390 17193 solver.cpp:228] Iteration 62000, loss = 0.01563
I1112 09:37:25.563499 17193 solver.cpp:244] Train net output #0: loss = 0.0156319 (* 1 = 0.0156319 loss)
I1112 09:37:25.563514 17193 sgd_solver.cpp:106] Iteration 62000, lr = 8.50957e-06
I1112 09:39:36.000689 17193 solver.cpp:228] Iteration 63000, loss = 0.00251313
I1112 09:39:36.000777 17193 solver.cpp:244] Train net output #0: loss = 0.002515 (* 1 = 0.002515 loss)
I1112 09:39:36.000792 17193 sgd_solver.cpp:106] Iteration 63000, lr = 8.40807e-06
I1112 09:41:46.383656 17193 solver.cpp:228] Iteration 64000, loss = 0.019572
I1112 09:41:46.383744 17193 solver.cpp:244] Train net output #0: loss = 0.019574 (* 1 = 0.019574 loss)
I1112 09:41:46.383756 17193 sgd_solver.cpp:106] Iteration 64000, lr = 8.30935e-06
I1112 09:43:56.653594 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_65000.caffemodel
I1112 09:44:10.757145 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_65000.solverstate
I1112 09:44:10.898671 17193 solver.cpp:337] Iteration 65000, Testing net (#0)
I1112 09:44:10.898712 17193 net.cpp:693] Ignoring source layer drop1
I1112 09:44:10.898733 17193 net.cpp:693] Ignoring source layer prob
I1112 09:44:18.110404 17193 solver.cpp:404] Test net output #0: accuracy = 0.99688
I1112 09:44:18.146694 17193 solver.cpp:228] Iteration 65000, loss = 0.0310616
I1112 09:44:18.146747 17193 solver.cpp:244] Train net output #0: loss = 0.0310635 (* 1 = 0.0310635 loss)
I1112 09:44:18.146764 17193 sgd_solver.cpp:106] Iteration 65000, lr = 8.21329e-06
I1112 09:46:28.552021 17193 solver.cpp:228] Iteration 66000, loss = 0.0165207
I1112 09:46:28.552111 17193 solver.cpp:244] Train net output #0: loss = 0.0165226 (* 1 = 0.0165226 loss)
I1112 09:46:28.552124 17193 sgd_solver.cpp:106] Iteration 66000, lr = 8.11979e-06
I1112 09:48:38.951653 17193 solver.cpp:228] Iteration 67000, loss = 0.0124637
I1112 09:48:38.951774 17193 solver.cpp:244] Train net output #0: loss = 0.0124655 (* 1 = 0.0124655 loss)
I1112 09:48:38.951791 17193 sgd_solver.cpp:106] Iteration 67000, lr = 8.02873e-06
I1112 09:50:49.349213 17193 solver.cpp:228] Iteration 68000, loss = 0.00470868
I1112 09:50:49.349287 17193 solver.cpp:244] Train net output #0: loss = 0.00471048 (* 1 = 0.00471048 loss)
I1112 09:50:49.349298 17193 sgd_solver.cpp:106] Iteration 68000, lr = 7.94003e-06
I1112 09:52:59.769484 17193 solver.cpp:228] Iteration 69000, loss = 0.0139715
I1112 09:52:59.769562 17193 solver.cpp:244] Train net output #0: loss = 0.0139733 (* 1 = 0.0139733 loss)
I1112 09:52:59.769575 17193 sgd_solver.cpp:106] Iteration 69000, lr = 7.85357e-06
I1112 09:55:10.071915 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_70000.caffemodel
I1112 09:55:22.692672 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_70000.solverstate
I1112 09:55:22.836462 17193 solver.cpp:337] Iteration 70000, Testing net (#0)
I1112 09:55:22.836503 17193 net.cpp:693] Ignoring source layer drop1
I1112 09:55:22.836524 17193 net.cpp:693] Ignoring source layer prob
I1112 09:55:30.034639 17193 solver.cpp:404] Test net output #0: accuracy = 0.99728
I1112 09:55:30.073004 17193 solver.cpp:228] Iteration 70000, loss = 0.108386
I1112 09:55:30.073046 17193 solver.cpp:244] Train net output #0: loss = 0.108388 (* 1 = 0.108388 loss)
I1112 09:55:30.073072 17193 sgd_solver.cpp:106] Iteration 70000, lr = 7.76928e-06
I1112 09:57:40.505363 17193 solver.cpp:228] Iteration 71000, loss = 0.0419956
I1112 09:57:40.505523 17193 solver.cpp:244] Train net output #0: loss = 0.0419974 (* 1 = 0.0419974 loss)
I1112 09:57:40.505538 17193 sgd_solver.cpp:106] Iteration 71000, lr = 7.68707e-06
I1112 09:59:50.922361 17193 solver.cpp:228] Iteration 72000, loss = 0.00742958
I1112 09:59:50.922487 17193 solver.cpp:244] Train net output #0: loss = 0.00743146 (* 1 = 0.00743146 loss)
I1112 09:59:50.922502 17193 sgd_solver.cpp:106] Iteration 72000, lr = 7.60686e-06
I1112 10:02:01.345787 17193 solver.cpp:228] Iteration 73000, loss = 0.0119934
I1112 10:02:01.345859 17193 solver.cpp:244] Train net output #0: loss = 0.0119953 (* 1 = 0.0119953 loss)
I1112 10:02:01.345870 17193 sgd_solver.cpp:106] Iteration 73000, lr = 7.52858e-06
I1112 10:04:11.761543 17193 solver.cpp:228] Iteration 74000, loss = 0.00303226
I1112 10:04:11.761659 17193 solver.cpp:244] Train net output #0: loss = 0.00303402 (* 1 = 0.00303402 loss)
I1112 10:04:11.761672 17193 sgd_solver.cpp:106] Iteration 74000, lr = 7.45215e-06
I1112 10:06:22.030303 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_75000.caffemodel
I1112 10:06:40.030457 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_75000.solverstate
I1112 10:06:40.170608 17193 solver.cpp:337] Iteration 75000, Testing net (#0)
I1112 10:06:40.170651 17193 net.cpp:693] Ignoring source layer drop1
I1112 10:06:40.170672 17193 net.cpp:693] Ignoring source layer prob
I1112 10:06:47.364522 17193 solver.cpp:404] Test net output #0: accuracy = 0.99696
I1112 10:06:47.400594 17193 solver.cpp:228] Iteration 75000, loss = 0.00312457
I1112 10:06:47.400636 17193 solver.cpp:244] Train net output #0: loss = 0.00312638 (* 1 = 0.00312638 loss)
I1112 10:06:47.400663 17193 sgd_solver.cpp:106] Iteration 75000, lr = 7.37751e-06
I1112 10:08:57.829016 17193 solver.cpp:228] Iteration 76000, loss = 0.0172165
I1112 10:08:57.829109 17193 solver.cpp:244] Train net output #0: loss = 0.0172183 (* 1 = 0.0172183 loss)
I1112 10:08:57.829123 17193 sgd_solver.cpp:106] Iteration 76000, lr = 7.30459e-06
I1112 10:11:08.286813 17193 solver.cpp:228] Iteration 77000, loss = 0.0753643
I1112 10:11:08.286932 17193 solver.cpp:244] Train net output #0: loss = 0.075366 (* 1 = 0.075366 loss)
I1112 10:11:08.286945 17193 sgd_solver.cpp:106] Iteration 77000, lr = 7.23333e-06
I1112 10:13:18.697801 17193 solver.cpp:228] Iteration 78000, loss = 0.0263328
I1112 10:13:18.697918 17193 solver.cpp:244] Train net output #0: loss = 0.0263345 (* 1 = 0.0263345 loss)
I1112 10:13:18.697932 17193 sgd_solver.cpp:106] Iteration 78000, lr = 7.16367e-06
I1112 10:15:29.110260 17193 solver.cpp:228] Iteration 79000, loss = 0.0326599
I1112 10:15:29.110332 17193 solver.cpp:244] Train net output #0: loss = 0.0326616 (* 1 = 0.0326616 loss)
I1112 10:15:29.110342 17193 sgd_solver.cpp:106] Iteration 79000, lr = 7.09556e-06
I1112 10:17:39.377058 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_80000.caffemodel
I1112 10:18:05.402990 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_80000.solverstate
I1112 10:18:05.542412 17193 solver.cpp:337] Iteration 80000, Testing net (#0)
I1112 10:18:05.542459 17193 net.cpp:693] Ignoring source layer drop1
I1112 10:18:05.542469 17193 net.cpp:693] Ignoring source layer prob
I1112 10:18:12.776607 17193 solver.cpp:404] Test net output #0: accuracy = 0.99768
I1112 10:18:12.812860 17193 solver.cpp:228] Iteration 80000, loss = 0.00236453
I1112 10:18:12.812911 17193 solver.cpp:244] Train net output #0: loss = 0.00236628 (* 1 = 0.00236628 loss)
I1112 10:18:12.812924 17193 sgd_solver.cpp:106] Iteration 80000, lr = 7.02894e-06
I1112 10:20:23.220958 17193 solver.cpp:228] Iteration 81000, loss = 0.00765635
I1112 10:20:23.221093 17193 solver.cpp:244] Train net output #0: loss = 0.00765813 (* 1 = 0.00765813 loss)
I1112 10:20:23.221107 17193 sgd_solver.cpp:106] Iteration 81000, lr = 6.96376e-06
I1112 10:22:33.641763 17193 solver.cpp:228] Iteration 82000, loss = 0.0218123
I1112 10:22:33.641829 17193 solver.cpp:244] Train net output #0: loss = 0.0218141 (* 1 = 0.0218141 loss)
I1112 10:22:33.641840 17193 sgd_solver.cpp:106] Iteration 82000, lr = 6.89997e-06
I1112 10:24:44.056349 17193 solver.cpp:228] Iteration 83000, loss = 0.00593235
I1112 10:24:44.056419 17193 solver.cpp:244] Train net output #0: loss = 0.00593417 (* 1 = 0.00593417 loss)
I1112 10:24:44.056432 17193 sgd_solver.cpp:106] Iteration 83000, lr = 6.83753e-06
I1112 10:26:54.478200 17193 solver.cpp:228] Iteration 84000, loss = 0.0277179
I1112 10:26:54.478307 17193 solver.cpp:244] Train net output #0: loss = 0.0277197 (* 1 = 0.0277197 loss)
I1112 10:26:54.478332 17193 sgd_solver.cpp:106] Iteration 84000, lr = 6.77639e-06
I1112 10:29:04.758725 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_85000.caffemodel
I1112 10:29:34.652869 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_85000.solverstate
I1112 10:29:34.792742 17193 solver.cpp:337] Iteration 85000, Testing net (#0)
I1112 10:29:34.792881 17193 net.cpp:693] Ignoring source layer drop1
I1112 10:29:34.792891 17193 net.cpp:693] Ignoring source layer prob
I1112 10:29:41.997611 17193 solver.cpp:404] Test net output #0: accuracy = 0.99736
I1112 10:29:42.033536 17193 solver.cpp:228] Iteration 85000, loss = 0.078367
I1112 10:29:42.033588 17193 solver.cpp:244] Train net output #0: loss = 0.0783688 (* 1 = 0.0783688 loss)
I1112 10:29:42.033602 17193 sgd_solver.cpp:106] Iteration 85000, lr = 6.71652e-06
I1112 10:31:52.444777 17193 solver.cpp:228] Iteration 86000, loss = 0.00343338
I1112 10:31:52.444869 17193 solver.cpp:244] Train net output #0: loss = 0.00343519 (* 1 = 0.00343519 loss)
I1112 10:31:52.444882 17193 sgd_solver.cpp:106] Iteration 86000, lr = 6.65786e-06
I1112 10:34:02.856685 17193 solver.cpp:228] Iteration 87000, loss = 0.00937355
I1112 10:34:02.856756 17193 solver.cpp:244] Train net output #0: loss = 0.00937536 (* 1 = 0.00937536 loss)
I1112 10:34:02.856767 17193 sgd_solver.cpp:106] Iteration 87000, lr = 6.60039e-06
I1112 10:36:13.279165 17193 solver.cpp:228] Iteration 88000, loss = 0.00986386
I1112 10:36:13.279233 17193 solver.cpp:244] Train net output #0: loss = 0.00986569 (* 1 = 0.00986569 loss)
I1112 10:36:13.279245 17193 sgd_solver.cpp:106] Iteration 88000, lr = 6.54406e-06
I1112 10:38:23.689203 17193 solver.cpp:228] Iteration 89000, loss = 0.0362355
I1112 10:38:23.689318 17193 solver.cpp:244] Train net output #0: loss = 0.0362374 (* 1 = 0.0362374 loss)
I1112 10:38:23.689332 17193 sgd_solver.cpp:106] Iteration 89000, lr = 6.48883e-06
I1112 10:40:33.965747 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_90000.caffemodel
I1112 10:40:53.562062 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_90000.solverstate
I1112 10:40:53.702118 17193 solver.cpp:337] Iteration 90000, Testing net (#0)
I1112 10:40:53.702167 17193 net.cpp:693] Ignoring source layer drop1
I1112 10:40:53.702174 17193 net.cpp:693] Ignoring source layer prob
I1112 10:41:00.910392 17193 solver.cpp:404] Test net output #0: accuracy = 0.99584
I1112 10:41:00.946714 17193 solver.cpp:228] Iteration 90000, loss = 0.042136
I1112 10:41:00.946763 17193 solver.cpp:244] Train net output #0: loss = 0.0421379 (* 1 = 0.0421379 loss)
I1112 10:41:00.946775 17193 sgd_solver.cpp:106] Iteration 90000, lr = 6.43469e-06
I1112 10:43:11.362624 17193 solver.cpp:228] Iteration 91000, loss = 0.00140887
I1112 10:43:11.362699 17193 solver.cpp:244] Train net output #0: loss = 0.00141071 (* 1 = 0.00141071 loss)
I1112 10:43:11.362710 17193 sgd_solver.cpp:106] Iteration 91000, lr = 6.38159e-06
I1112 10:45:21.768270 17193 solver.cpp:228] Iteration 92000, loss = 0.00385397
I1112 10:45:21.768484 17193 solver.cpp:244] Train net output #0: loss = 0.0038558 (* 1 = 0.0038558 loss)
I1112 10:45:21.768501 17193 sgd_solver.cpp:106] Iteration 92000, lr = 6.32949e-06
I1112 10:47:32.178804 17193 solver.cpp:228] Iteration 93000, loss = 0.00479621
I1112 10:47:32.178879 17193 solver.cpp:244] Train net output #0: loss = 0.00479804 (* 1 = 0.00479804 loss)
I1112 10:47:32.178892 17193 sgd_solver.cpp:106] Iteration 93000, lr = 6.27838e-06
I1112 10:49:42.582052 17193 solver.cpp:228] Iteration 94000, loss = 0.00249722
I1112 10:49:42.582124 17193 solver.cpp:244] Train net output #0: loss = 0.00249908 (* 1 = 0.00249908 loss)
I1112 10:49:42.582136 17193 sgd_solver.cpp:106] Iteration 94000, lr = 6.22822e-06
I1112 10:51:52.869441 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_95000.caffemodel
I1112 10:52:22.938619 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_95000.solverstate
I1112 10:52:23.077471 17193 solver.cpp:337] Iteration 95000, Testing net (#0)
I1112 10:52:23.077520 17193 net.cpp:693] Ignoring source layer drop1
I1112 10:52:23.077528 17193 net.cpp:693] Ignoring source layer prob
I1112 10:52:30.274521 17193 solver.cpp:404] Test net output #0: accuracy = 0.99776
I1112 10:52:30.310628 17193 solver.cpp:228] Iteration 95000, loss = 0.00168234
I1112 10:52:30.310679 17193 solver.cpp:244] Train net output #0: loss = 0.00168415 (* 1 = 0.00168415 loss)
I1112 10:52:30.310694 17193 sgd_solver.cpp:106] Iteration 95000, lr = 6.17899e-06
I1112 10:54:40.724043 17193 solver.cpp:228] Iteration 96000, loss = 0.0257581
I1112 10:54:40.724165 17193 solver.cpp:244] Train net output #0: loss = 0.0257599 (* 1 = 0.0257599 loss)
I1112 10:54:40.724179 17193 sgd_solver.cpp:106] Iteration 96000, lr = 6.13066e-06
I1112 10:56:51.138087 17193 solver.cpp:228] Iteration 97000, loss = 0.0371108
I1112 10:56:51.138206 17193 solver.cpp:244] Train net output #0: loss = 0.0371125 (* 1 = 0.0371125 loss)
I1112 10:56:51.138219 17193 sgd_solver.cpp:106] Iteration 97000, lr = 6.0832e-06
I1112 10:59:01.554452 17193 solver.cpp:228] Iteration 98000, loss = 0.0573133
I1112 10:59:01.554525 17193 solver.cpp:244] Train net output #0: loss = 0.0573151 (* 1 = 0.0573151 loss)
I1112 10:59:01.554538 17193 sgd_solver.cpp:106] Iteration 98000, lr = 6.03659e-06
I1112 11:01:11.959746 17193 solver.cpp:228] Iteration 99000, loss = 0.00556774
I1112 11:01:11.959866 17193 solver.cpp:244] Train net output #0: loss = 0.00556944 (* 1 = 0.00556944 loss)
I1112 11:01:11.959879 17193 sgd_solver.cpp:106] Iteration 99000, lr = 5.9908e-06
I1112 11:03:22.230046 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_100000.caffemodel
I1112 11:03:53.647625 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_100000.solverstate
I1112 11:03:54.198310 17193 solver.cpp:337] Iteration 100000, Testing net (#0)
I1112 11:03:54.198361 17193 net.cpp:693] Ignoring source layer drop1
I1112 11:03:54.198370 17193 net.cpp:693] Ignoring source layer prob
I1112 11:04:01.403614 17193 solver.cpp:404] Test net output #0: accuracy = 0.998
I1112 11:04:01.439766 17193 solver.cpp:228] Iteration 100000, loss = 0.0161267
I1112 11:04:01.439817 17193 solver.cpp:244] Train net output #0: loss = 0.0161283 (* 1 = 0.0161283 loss)
I1112 11:04:01.439831 17193 sgd_solver.cpp:106] Iteration 100000, lr = 5.94581e-06
I1112 11:06:11.853008 17193 solver.cpp:228] Iteration 101000, loss = 0.00543628
I1112 11:06:11.853147 17193 solver.cpp:244] Train net output #0: loss = 0.00543799 (* 1 = 0.00543799 loss)
I1112 11:06:11.853159 17193 sgd_solver.cpp:106] Iteration 101000, lr = 5.90161e-06
I1112 11:08:22.258002 17193 solver.cpp:228] Iteration 102000, loss = 0.0145269
I1112 11:08:22.258123 17193 solver.cpp:244] Train net output #0: loss = 0.0145285 (* 1 = 0.0145285 loss)
I1112 11:08:22.258137 17193 sgd_solver.cpp:106] Iteration 102000, lr = 5.85816e-06
I1112 11:10:32.667886 17193 solver.cpp:228] Iteration 103000, loss = 0.00577882
I1112 11:10:32.668035 17193 solver.cpp:244] Train net output #0: loss = 0.00578045 (* 1 = 0.00578045 loss)
I1112 11:10:32.668051 17193 sgd_solver.cpp:106] Iteration 103000, lr = 5.81546e-06
I1112 11:12:43.077463 17193 solver.cpp:228] Iteration 104000, loss = 0.00145848
I1112 11:12:43.077584 17193 solver.cpp:244] Train net output #0: loss = 0.00146013 (* 1 = 0.00146013 loss)
I1112 11:12:43.077597 17193 sgd_solver.cpp:106] Iteration 104000, lr = 5.77347e-06
I1112 11:14:53.343333 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_105000.caffemodel
I1112 11:15:12.092910 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_105000.solverstate
I1112 11:15:12.839843 17193 solver.cpp:337] Iteration 105000, Testing net (#0)
I1112 11:15:12.839897 17193 net.cpp:693] Ignoring source layer drop1
I1112 11:15:12.839911 17193 net.cpp:693] Ignoring source layer prob
I1112 11:15:20.050802 17193 solver.cpp:404] Test net output #0: accuracy = 0.99744
I1112 11:15:20.088654 17193 solver.cpp:228] Iteration 105000, loss = 0.00872987
I1112 11:15:20.088734 17193 solver.cpp:244] Train net output #0: loss = 0.00873159 (* 1 = 0.00873159 loss)
I1112 11:15:20.088755 17193 sgd_solver.cpp:106] Iteration 105000, lr = 5.73218e-06
I1112 11:17:30.539573 17193 solver.cpp:228] Iteration 106000, loss = 0.01071
I1112 11:17:30.539649 17193 solver.cpp:244] Train net output #0: loss = 0.0107117 (* 1 = 0.0107117 loss)
I1112 11:17:30.539661 17193 sgd_solver.cpp:106] Iteration 106000, lr = 5.69158e-06
I1112 11:19:40.968560 17193 solver.cpp:228] Iteration 107000, loss = 0.0138835
I1112 11:19:40.968700 17193 solver.cpp:244] Train net output #0: loss = 0.0138853 (* 1 = 0.0138853 loss)
I1112 11:19:40.968713 17193 sgd_solver.cpp:106] Iteration 107000, lr = 5.65164e-06
I1112 11:21:51.371809 17193 solver.cpp:228] Iteration 108000, loss = 0.0127865
I1112 11:21:51.371949 17193 solver.cpp:244] Train net output #0: loss = 0.0127882 (* 1 = 0.0127882 loss)
I1112 11:21:51.371961 17193 sgd_solver.cpp:106] Iteration 108000, lr = 5.61235e-06
I1112 11:24:01.776815 17193 solver.cpp:228] Iteration 109000, loss = 0.00385717
I1112 11:24:01.776906 17193 solver.cpp:244] Train net output #0: loss = 0.00385894 (* 1 = 0.00385894 loss)
I1112 11:24:01.776919 17193 sgd_solver.cpp:106] Iteration 109000, lr = 5.57369e-06
I1112 11:26:12.048195 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_110000.caffemodel
I1112 11:26:35.827205 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_110000.solverstate
I1112 11:26:36.474148 17193 solver.cpp:337] Iteration 110000, Testing net (#0)
I1112 11:26:36.474189 17193 net.cpp:693] Ignoring source layer drop1
I1112 11:26:36.474210 17193 net.cpp:693] Ignoring source layer prob
I1112 11:26:43.675721 17193 solver.cpp:404] Test net output #0: accuracy = 0.99776
I1112 11:26:43.715004 17193 solver.cpp:228] Iteration 110000, loss = 0.0056683
I1112 11:26:43.715055 17193 solver.cpp:244] Train net output #0: loss = 0.00567008 (* 1 = 0.00567008 loss)
I1112 11:26:43.715067 17193 sgd_solver.cpp:106] Iteration 110000, lr = 5.53564e-06
I1112 11:28:54.115092 17193 solver.cpp:228] Iteration 111000, loss = 0.00765356
I1112 11:28:54.115165 17193 solver.cpp:244] Train net output #0: loss = 0.00765531 (* 1 = 0.00765531 loss)
I1112 11:28:54.115177 17193 sgd_solver.cpp:106] Iteration 111000, lr = 5.4982e-06
I1112 11:31:04.588783 17193 solver.cpp:228] Iteration 112000, loss = 0.0160112
I1112 11:31:04.588873 17193 solver.cpp:244] Train net output #0: loss = 0.016013 (* 1 = 0.016013 loss)
I1112 11:31:04.588886 17193 sgd_solver.cpp:106] Iteration 112000, lr = 5.46134e-06
I1112 11:33:14.996325 17193 solver.cpp:228] Iteration 113000, loss = 0.0122499
I1112 11:33:14.996443 17193 solver.cpp:244] Train net output #0: loss = 0.0122516 (* 1 = 0.0122516 loss)
I1112 11:33:14.996455 17193 sgd_solver.cpp:106] Iteration 113000, lr = 5.42506e-06
I1112 11:35:25.420202 17193 solver.cpp:228] Iteration 114000, loss = 0.00470987
I1112 11:35:25.420377 17193 solver.cpp:244] Train net output #0: loss = 0.00471159 (* 1 = 0.00471159 loss)
I1112 11:35:25.420390 17193 sgd_solver.cpp:106] Iteration 114000, lr = 5.38933e-06
I1112 11:37:35.704777 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_115000.caffemodel
I1112 11:38:02.572888 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_115000.solverstate
I1112 11:38:02.711416 17193 solver.cpp:337] Iteration 115000, Testing net (#0)
I1112 11:38:02.711465 17193 net.cpp:693] Ignoring source layer drop1
I1112 11:38:02.711483 17193 net.cpp:693] Ignoring source layer prob
I1112 11:38:09.909050 17193 solver.cpp:404] Test net output #0: accuracy = 0.9976
I1112 11:38:09.944818 17193 solver.cpp:228] Iteration 115000, loss = 0.00276966
I1112 11:38:09.944871 17193 solver.cpp:244] Train net output #0: loss = 0.00277137 (* 1 = 0.00277137 loss)
I1112 11:38:09.944887 17193 sgd_solver.cpp:106] Iteration 115000, lr = 5.35414e-06
I1112 11:40:20.345904 17193 solver.cpp:228] Iteration 116000, loss = 0.0170964
I1112 11:40:20.345999 17193 solver.cpp:244] Train net output #0: loss = 0.0170981 (* 1 = 0.0170981 loss)
I1112 11:40:20.346009 17193 sgd_solver.cpp:106] Iteration 116000, lr = 5.31949e-06
I1112 11:42:30.741521 17193 solver.cpp:228] Iteration 117000, loss = 0.00253313
I1112 11:42:30.741606 17193 solver.cpp:244] Train net output #0: loss = 0.00253483 (* 1 = 0.00253483 loss)
I1112 11:42:30.741618 17193 sgd_solver.cpp:106] Iteration 117000, lr = 5.28536e-06
I1112 11:44:41.134482 17193 solver.cpp:228] Iteration 118000, loss = 0.00764648
I1112 11:44:41.134574 17193 solver.cpp:244] Train net output #0: loss = 0.00764813 (* 1 = 0.00764813 loss)
I1112 11:44:41.134588 17193 sgd_solver.cpp:106] Iteration 118000, lr = 5.25173e-06
I1112 11:46:51.535643 17193 solver.cpp:228] Iteration 119000, loss = 0.00309567
I1112 11:46:51.535729 17193 solver.cpp:244] Train net output #0: loss = 0.00309737 (* 1 = 0.00309737 loss)
I1112 11:46:51.535740 17193 sgd_solver.cpp:106] Iteration 119000, lr = 5.2186e-06
I1112 11:49:01.816495 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_120000.caffemodel
I1112 11:49:19.828313 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_120000.solverstate
I1112 11:49:19.966259 17193 solver.cpp:337] Iteration 120000, Testing net (#0)
I1112 11:49:19.966310 17193 net.cpp:693] Ignoring source layer drop1
I1112 11:49:19.966320 17193 net.cpp:693] Ignoring source layer prob
I1112 11:49:27.169723 17193 solver.cpp:404] Test net output #0: accuracy = 0.9976
I1112 11:49:27.206605 17193 solver.cpp:228] Iteration 120000, loss = 0.0134996
I1112 11:49:27.206658 17193 solver.cpp:244] Train net output #0: loss = 0.0135014 (* 1 = 0.0135014 loss)
I1112 11:49:27.206673 17193 sgd_solver.cpp:106] Iteration 120000, lr = 5.18595e-06
I1112 11:51:37.628993 17193 solver.cpp:228] Iteration 121000, loss = 0.00552269
I1112 11:51:37.629118 17193 solver.cpp:244] Train net output #0: loss = 0.00552434 (* 1 = 0.00552434 loss)
I1112 11:51:37.629133 17193 sgd_solver.cpp:106] Iteration 121000, lr = 5.15377e-06
I1112 11:53:48.051872 17193 solver.cpp:228] Iteration 122000, loss = 0.0153007
I1112 11:53:48.051959 17193 solver.cpp:244] Train net output #0: loss = 0.0153025 (* 1 = 0.0153025 loss)
I1112 11:53:48.051972 17193 sgd_solver.cpp:106] Iteration 122000, lr = 5.12206e-06
I1112 11:55:58.467332 17193 solver.cpp:228] Iteration 123000, loss = 0.00218341
I1112 11:55:58.467456 17193 solver.cpp:244] Train net output #0: loss = 0.00218512 (* 1 = 0.00218512 loss)
I1112 11:55:58.467484 17193 sgd_solver.cpp:106] Iteration 123000, lr = 5.09079e-06
I1112 11:58:08.880429 17193 solver.cpp:228] Iteration 124000, loss = 0.0047274
I1112 11:58:08.880516 17193 solver.cpp:244] Train net output #0: loss = 0.00472914 (* 1 = 0.00472914 loss)
I1112 11:58:08.880528 17193 sgd_solver.cpp:106] Iteration 124000, lr = 5.05997e-06
I1112 12:00:19.155210 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_125000.caffemodel
I1112 12:00:46.252993 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_125000.solverstate
I1112 12:00:46.390389 17193 solver.cpp:337] Iteration 125000, Testing net (#0)
I1112 12:00:46.390439 17193 net.cpp:693] Ignoring source layer drop1
I1112 12:00:46.390450 17193 net.cpp:693] Ignoring source layer prob
I1112 12:00:53.596827 17193 solver.cpp:404] Test net output #0: accuracy = 0.99768
I1112 12:00:53.632899 17193 solver.cpp:228] Iteration 125000, loss = 0.00964669
I1112 12:00:53.632949 17193 solver.cpp:244] Train net output #0: loss = 0.00964844 (* 1 = 0.00964844 loss)
I1112 12:00:53.632964 17193 sgd_solver.cpp:106] Iteration 125000, lr = 5.02958e-06
I1112 12:03:04.042045 17193 solver.cpp:228] Iteration 126000, loss = 0.00579223
I1112 12:03:04.042120 17193 solver.cpp:244] Train net output #0: loss = 0.00579399 (* 1 = 0.00579399 loss)
I1112 12:03:04.042135 17193 sgd_solver.cpp:106] Iteration 126000, lr = 4.99962e-06
I1112 12:05:14.444810 17193 solver.cpp:228] Iteration 127000, loss = 0.0195434
I1112 12:05:14.444916 17193 solver.cpp:244] Train net output #0: loss = 0.0195452 (* 1 = 0.0195452 loss)
I1112 12:05:14.444941 17193 sgd_solver.cpp:106] Iteration 127000, lr = 4.97006e-06
I1112 12:07:24.854748 17193 solver.cpp:228] Iteration 128000, loss = 0.0196261
I1112 12:07:24.854856 17193 solver.cpp:244] Train net output #0: loss = 0.0196279 (* 1 = 0.0196279 loss)
I1112 12:07:24.854879 17193 sgd_solver.cpp:106] Iteration 128000, lr = 4.94091e-06
I1112 12:09:35.286113 17193 solver.cpp:228] Iteration 129000, loss = 0.00688472
I1112 12:09:35.286216 17193 solver.cpp:244] Train net output #0: loss = 0.00688655 (* 1 = 0.00688655 loss)
I1112 12:09:35.286242 17193 sgd_solver.cpp:106] Iteration 129000, lr = 4.91216e-06
I1112 12:11:45.542387 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_130000.caffemodel
I1112 12:12:08.724977 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_130000.solverstate
I1112 12:12:08.865871 17193 solver.cpp:337] Iteration 130000, Testing net (#0)
I1112 12:12:08.865924 17193 net.cpp:693] Ignoring source layer drop1
I1112 12:12:08.865933 17193 net.cpp:693] Ignoring source layer prob
I1112 12:12:16.067539 17193 solver.cpp:404] Test net output #0: accuracy = 0.99808
I1112 12:12:16.103832 17193 solver.cpp:228] Iteration 130000, loss = 0.0189293
I1112 12:12:16.103886 17193 solver.cpp:244] Train net output #0: loss = 0.0189312 (* 1 = 0.0189312 loss)
I1112 12:12:16.103901 17193 sgd_solver.cpp:106] Iteration 130000, lr = 4.8838e-06
I1112 12:14:26.488951 17193 solver.cpp:228] Iteration 131000, loss = 0.0022104
I1112 12:14:26.489056 17193 solver.cpp:244] Train net output #0: loss = 0.0022122 (* 1 = 0.0022122 loss)
I1112 12:14:26.489080 17193 sgd_solver.cpp:106] Iteration 131000, lr = 4.85581e-06
I1112 12:16:36.878696 17193 solver.cpp:228] Iteration 132000, loss = 0.00378329
I1112 12:16:36.878803 17193 solver.cpp:244] Train net output #0: loss = 0.00378512 (* 1 = 0.00378512 loss)
I1112 12:16:36.878826 17193 sgd_solver.cpp:106] Iteration 132000, lr = 4.82819e-06
I1112 12:18:47.278796 17193 solver.cpp:228] Iteration 133000, loss = 0.00410104
I1112 12:18:47.278985 17193 solver.cpp:244] Train net output #0: loss = 0.0041029 (* 1 = 0.0041029 loss)
I1112 12:18:47.279021 17193 sgd_solver.cpp:106] Iteration 133000, lr = 4.80094e-06
I1112 12:20:57.698715 17193 solver.cpp:228] Iteration 134000, loss = 0.00228239
I1112 12:20:57.698819 17193 solver.cpp:244] Train net output #0: loss = 0.00228427 (* 1 = 0.00228427 loss)
I1112 12:20:57.698844 17193 sgd_solver.cpp:106] Iteration 134000, lr = 4.77405e-06
I1112 12:23:07.992764 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_135000.caffemodel
I1112 12:23:36.272923 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_135000.solverstate
I1112 12:23:36.412394 17193 solver.cpp:337] Iteration 135000, Testing net (#0)
I1112 12:23:36.412444 17193 net.cpp:693] Ignoring source layer drop1
I1112 12:23:36.412453 17193 net.cpp:693] Ignoring source layer prob
I1112 12:23:43.606752 17193 solver.cpp:404] Test net output #0: accuracy = 0.99824
I1112 12:23:43.643174 17193 solver.cpp:228] Iteration 135000, loss = 0.0034159
I1112 12:23:43.643225 17193 solver.cpp:244] Train net output #0: loss = 0.00341779 (* 1 = 0.00341779 loss)
I1112 12:23:43.643239 17193 sgd_solver.cpp:106] Iteration 135000, lr = 4.7475e-06
I1112 12:25:54.040248 17193 solver.cpp:228] Iteration 136000, loss = 0.0120066
I1112 12:25:54.040343 17193 solver.cpp:244] Train net output #0: loss = 0.0120085 (* 1 = 0.0120085 loss)
I1112 12:25:54.040355 17193 sgd_solver.cpp:106] Iteration 136000, lr = 4.7213e-06
I1112 12:28:04.452798 17193 solver.cpp:228] Iteration 137000, loss = 0.00464187
I1112 12:28:04.452875 17193 solver.cpp:244] Train net output #0: loss = 0.00464369 (* 1 = 0.00464369 loss)
I1112 12:28:04.452890 17193 sgd_solver.cpp:106] Iteration 137000, lr = 4.69543e-06
I1112 12:30:14.839046 17193 solver.cpp:228] Iteration 138000, loss = 0.00190926
I1112 12:30:14.839123 17193 solver.cpp:244] Train net output #0: loss = 0.00191105 (* 1 = 0.00191105 loss)
I1112 12:30:14.839135 17193 sgd_solver.cpp:106] Iteration 138000, lr = 4.66989e-06
I1112 12:32:25.248997 17193 solver.cpp:228] Iteration 139000, loss = 0.0552999
I1112 12:32:25.249105 17193 solver.cpp:244] Train net output #0: loss = 0.0553017 (* 1 = 0.0553017 loss)
I1112 12:32:25.249130 17193 sgd_solver.cpp:106] Iteration 139000, lr = 4.64467e-06
I1112 12:34:35.532831 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_140000.caffemodel
I1112 12:35:09.020220 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_140000.solverstate
I1112 12:35:10.204108 17193 solver.cpp:337] Iteration 140000, Testing net (#0)
I1112 12:35:10.204159 17193 net.cpp:693] Ignoring source layer drop1
I1112 12:35:10.204166 17193 net.cpp:693] Ignoring source layer prob
I1112 12:35:17.407395 17193 solver.cpp:404] Test net output #0: accuracy = 0.998
I1112 12:35:17.442706 17193 solver.cpp:228] Iteration 140000, loss = 0.0363352
I1112 12:35:17.442750 17193 solver.cpp:244] Train net output #0: loss = 0.036337 (* 1 = 0.036337 loss)
I1112 12:35:17.442765 17193 sgd_solver.cpp:106] Iteration 140000, lr = 4.61976e-06
I1112 12:37:27.845494 17193 solver.cpp:228] Iteration 141000, loss = 0.0526587
I1112 12:37:27.845640 17193 solver.cpp:244] Train net output #0: loss = 0.0526605 (* 1 = 0.0526605 loss)
I1112 12:37:27.845655 17193 sgd_solver.cpp:106] Iteration 141000, lr = 4.59517e-06
I1112 12:39:38.265979 17193 solver.cpp:228] Iteration 142000, loss = 0.00281541
I1112 12:39:38.266062 17193 solver.cpp:244] Train net output #0: loss = 0.00281726 (* 1 = 0.00281726 loss)
I1112 12:39:38.266073 17193 sgd_solver.cpp:106] Iteration 142000, lr = 4.57088e-06
I1112 12:41:48.681813 17193 solver.cpp:228] Iteration 143000, loss = 0.00215914
I1112 12:41:48.681910 17193 solver.cpp:244] Train net output #0: loss = 0.00216099 (* 1 = 0.00216099 loss)
I1112 12:41:48.681921 17193 sgd_solver.cpp:106] Iteration 143000, lr = 4.54689e-06
I1112 12:43:59.115756 17193 solver.cpp:228] Iteration 144000, loss = 0.00389099
I1112 12:43:59.115820 17193 solver.cpp:244] Train net output #0: loss = 0.00389287 (* 1 = 0.00389287 loss)
I1112 12:43:59.115831 17193 sgd_solver.cpp:106] Iteration 144000, lr = 4.52318e-06
I1112 12:46:09.419272 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_145000.caffemodel
I1112 12:46:33.935945 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_145000.solverstate
I1112 12:46:34.075363 17193 solver.cpp:337] Iteration 145000, Testing net (#0)
I1112 12:46:34.075412 17193 net.cpp:693] Ignoring source layer drop1
I1112 12:46:34.075420 17193 net.cpp:693] Ignoring source layer prob
I1112 12:46:41.277225 17193 solver.cpp:404] Test net output #0: accuracy = 0.99776
I1112 12:46:41.313522 17193 solver.cpp:228] Iteration 145000, loss = 0.00208943
I1112 12:46:41.313571 17193 solver.cpp:244] Train net output #0: loss = 0.00209132 (* 1 = 0.00209132 loss)
I1112 12:46:41.313583 17193 sgd_solver.cpp:106] Iteration 145000, lr = 4.49977e-06
I1112 12:48:51.714341 17193 solver.cpp:228] Iteration 146000, loss = 0.00641618
I1112 12:48:51.714450 17193 solver.cpp:244] Train net output #0: loss = 0.00641806 (* 1 = 0.00641806 loss)
I1112 12:48:51.714473 17193 sgd_solver.cpp:106] Iteration 146000, lr = 4.47664e-06
I1112 12:51:02.116539 17193 solver.cpp:228] Iteration 147000, loss = 0.00921038
I1112 12:51:02.116726 17193 solver.cpp:244] Train net output #0: loss = 0.00921227 (* 1 = 0.00921227 loss)
I1112 12:51:02.116742 17193 sgd_solver.cpp:106] Iteration 147000, lr = 4.45378e-06
I1112 12:53:12.526419 17193 solver.cpp:228] Iteration 148000, loss = 0.00627513
I1112 12:53:12.526491 17193 solver.cpp:244] Train net output #0: loss = 0.006277 (* 1 = 0.006277 loss)
I1112 12:53:12.526504 17193 sgd_solver.cpp:106] Iteration 148000, lr = 4.43119e-06
I1112 12:55:22.932384 17193 solver.cpp:228] Iteration 149000, loss = 0.0643277
I1112 12:55:22.932458 17193 solver.cpp:244] Train net output #0: loss = 0.0643296 (* 1 = 0.0643296 loss)
I1112 12:55:22.932471 17193 sgd_solver.cpp:106] Iteration 149000, lr = 4.40887e-06
I1112 12:57:33.228235 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_150000.caffemodel
I1112 12:57:57.830957 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_150000.solverstate
I1112 12:57:57.971102 17193 solver.cpp:337] Iteration 150000, Testing net (#0)
I1112 12:57:57.971141 17193 net.cpp:693] Ignoring source layer drop1
I1112 12:57:57.971161 17193 net.cpp:693] Ignoring source layer prob
I1112 12:58:05.180610 17193 solver.cpp:404] Test net output #0: accuracy = 0.99856
I1112 12:58:05.216403 17193 solver.cpp:228] Iteration 150000, loss = 0.00284142
I1112 12:58:05.216451 17193 solver.cpp:244] Train net output #0: loss = 0.00284326 (* 1 = 0.00284326 loss)
I1112 12:58:05.216465 17193 sgd_solver.cpp:106] Iteration 150000, lr = 4.3868e-06
I1112 13:00:15.585351 17193 solver.cpp:228] Iteration 151000, loss = 0.00477281
I1112 13:00:15.585471 17193 solver.cpp:244] Train net output #0: loss = 0.00477465 (* 1 = 0.00477465 loss)
I1112 13:00:15.585485 17193 sgd_solver.cpp:106] Iteration 151000, lr = 4.365e-06
I1112 13:02:25.972086 17193 solver.cpp:228] Iteration 152000, loss = 0.0510125
I1112 13:02:25.972205 17193 solver.cpp:244] Train net output #0: loss = 0.0510144 (* 1 = 0.0510144 loss)
I1112 13:02:25.972218 17193 sgd_solver.cpp:106] Iteration 152000, lr = 4.34344e-06
I1112 13:04:36.369133 17193 solver.cpp:228] Iteration 153000, loss = 0.00210276
I1112 13:04:36.369204 17193 solver.cpp:244] Train net output #0: loss = 0.0021046 (* 1 = 0.0021046 loss)
I1112 13:04:36.369217 17193 sgd_solver.cpp:106] Iteration 153000, lr = 4.32213e-06
I1112 13:06:46.779214 17193 solver.cpp:228] Iteration 154000, loss = 0.00535677
I1112 13:06:46.779333 17193 solver.cpp:244] Train net output #0: loss = 0.00535861 (* 1 = 0.00535861 loss)
I1112 13:06:46.779345 17193 sgd_solver.cpp:106] Iteration 154000, lr = 4.30107e-06
I1112 13:08:57.067198 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_155000.caffemodel
I1112 13:09:23.219465 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_155000.solverstate
I1112 13:09:23.356142 17193 solver.cpp:337] Iteration 155000, Testing net (#0)
I1112 13:09:23.356191 17193 net.cpp:693] Ignoring source layer drop1
I1112 13:09:23.356200 17193 net.cpp:693] Ignoring source layer prob
I1112 13:09:30.563210 17193 solver.cpp:404] Test net output #0: accuracy = 0.99848
I1112 13:09:30.599601 17193 solver.cpp:228] Iteration 155000, loss = 0.00396648
I1112 13:09:30.599650 17193 solver.cpp:244] Train net output #0: loss = 0.00396833 (* 1 = 0.00396833 loss)
I1112 13:09:30.599665 17193 sgd_solver.cpp:106] Iteration 155000, lr = 4.28024e-06
I1112 13:11:40.990519 17193 solver.cpp:228] Iteration 156000, loss = 0.0100048
I1112 13:11:40.990651 17193 solver.cpp:244] Train net output #0: loss = 0.0100067 (* 1 = 0.0100067 loss)
I1112 13:11:40.990676 17193 sgd_solver.cpp:106] Iteration 156000, lr = 4.25965e-06
I1112 13:13:51.405164 17193 solver.cpp:228] Iteration 157000, loss = 0.00986193
I1112 13:13:51.405242 17193 solver.cpp:244] Train net output #0: loss = 0.00986382 (* 1 = 0.00986382 loss)
I1112 13:13:51.405256 17193 sgd_solver.cpp:106] Iteration 157000, lr = 4.23928e-06
I1112 13:16:01.810799 17193 solver.cpp:228] Iteration 158000, loss = 0.0223931
I1112 13:16:01.810885 17193 solver.cpp:244] Train net output #0: loss = 0.0223951 (* 1 = 0.0223951 loss)
I1112 13:16:01.810899 17193 sgd_solver.cpp:106] Iteration 158000, lr = 4.21914e-06
I1112 13:18:12.210327 17193 solver.cpp:228] Iteration 159000, loss = 0.00839358
I1112 13:18:12.210413 17193 solver.cpp:244] Train net output #0: loss = 0.00839548 (* 1 = 0.00839548 loss)
I1112 13:18:12.210424 17193 sgd_solver.cpp:106] Iteration 159000, lr = 4.19923e-06
I1112 13:20:22.471000 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_160000.caffemodel
I1112 13:20:49.264866 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_160000.solverstate
I1112 13:20:49.403817 17193 solver.cpp:337] Iteration 160000, Testing net (#0)
I1112 13:20:49.403867 17193 net.cpp:693] Ignoring source layer drop1
I1112 13:20:49.403877 17193 net.cpp:693] Ignoring source layer prob
I1112 13:20:56.614260 17193 solver.cpp:404] Test net output #0: accuracy = 0.99792
I1112 13:20:56.650038 17193 solver.cpp:228] Iteration 160000, loss = 0.00453755
I1112 13:20:56.650092 17193 solver.cpp:244] Train net output #0: loss = 0.00453946 (* 1 = 0.00453946 loss)
I1112 13:20:56.650108 17193 sgd_solver.cpp:106] Iteration 160000, lr = 4.17953e-06
I1112 13:23:07.070565 17193 solver.cpp:228] Iteration 161000, loss = 0.0266744
I1112 13:23:07.070658 17193 solver.cpp:244] Train net output #0: loss = 0.0266763 (* 1 = 0.0266763 loss)
I1112 13:23:07.070670 17193 sgd_solver.cpp:106] Iteration 161000, lr = 4.16004e-06
I1112 13:25:17.459127 17193 solver.cpp:228] Iteration 162000, loss = 0.00684146
I1112 13:25:17.459218 17193 solver.cpp:244] Train net output #0: loss = 0.00684339 (* 1 = 0.00684339 loss)
I1112 13:25:17.459228 17193 sgd_solver.cpp:106] Iteration 162000, lr = 4.14077e-06
I1112 13:27:27.866778 17193 solver.cpp:228] Iteration 163000, loss = 0.0066272
I1112 13:27:27.866869 17193 solver.cpp:244] Train net output #0: loss = 0.0066291 (* 1 = 0.0066291 loss)
I1112 13:27:27.866881 17193 sgd_solver.cpp:106] Iteration 163000, lr = 4.1217e-06
I1112 13:29:38.279705 17193 solver.cpp:228] Iteration 164000, loss = 0.0144103
I1112 13:29:38.279796 17193 solver.cpp:244] Train net output #0: loss = 0.0144122 (* 1 = 0.0144122 loss)
I1112 13:29:38.279808 17193 sgd_solver.cpp:106] Iteration 164000, lr = 4.10284e-06
I1112 13:31:48.554280 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_165000.caffemodel
I1112 13:32:22.073691 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_165000.solverstate
I1112 13:32:22.213836 17193 solver.cpp:337] Iteration 165000, Testing net (#0)
I1112 13:32:22.213887 17193 net.cpp:693] Ignoring source layer drop1
I1112 13:32:22.213896 17193 net.cpp:693] Ignoring source layer prob
I1112 13:32:29.415191 17193 solver.cpp:404] Test net output #0: accuracy = 0.998
I1112 13:32:29.450726 17193 solver.cpp:228] Iteration 165000, loss = 0.00275739
I1112 13:32:29.450779 17193 solver.cpp:244] Train net output #0: loss = 0.00275929 (* 1 = 0.00275929 loss)
I1112 13:32:29.450794 17193 sgd_solver.cpp:106] Iteration 165000, lr = 4.08418e-06
I1112 13:34:39.849742 17193 solver.cpp:228] Iteration 166000, loss = 0.0180023
I1112 13:34:39.849862 17193 solver.cpp:244] Train net output #0: loss = 0.0180042 (* 1 = 0.0180042 loss)
I1112 13:34:39.849876 17193 sgd_solver.cpp:106] Iteration 166000, lr = 4.06571e-06
I1112 13:36:50.266611 17193 solver.cpp:228] Iteration 167000, loss = 0.00940369
I1112 13:36:50.266705 17193 solver.cpp:244] Train net output #0: loss = 0.00940567 (* 1 = 0.00940567 loss)
I1112 13:36:50.266721 17193 sgd_solver.cpp:106] Iteration 167000, lr = 4.04744e-06
I1112 13:39:00.675823 17193 solver.cpp:228] Iteration 168000, loss = 0.00118247
I1112 13:39:00.675906 17193 solver.cpp:244] Train net output #0: loss = 0.00118441 (* 1 = 0.00118441 loss)
I1112 13:39:00.675917 17193 sgd_solver.cpp:106] Iteration 168000, lr = 4.02936e-06
I1112 13:41:11.082743 17193 solver.cpp:228] Iteration 169000, loss = 0.00113313
I1112 13:41:11.082814 17193 solver.cpp:244] Train net output #0: loss = 0.00113505 (* 1 = 0.00113505 loss)
I1112 13:41:11.082826 17193 sgd_solver.cpp:106] Iteration 169000, lr = 4.01146e-06
I1112 13:43:21.367377 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_170000.caffemodel
I1112 13:43:44.857727 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_170000.solverstate
I1112 13:43:44.996640 17193 solver.cpp:337] Iteration 170000, Testing net (#0)
I1112 13:43:44.996691 17193 net.cpp:693] Ignoring source layer drop1
I1112 13:43:44.996700 17193 net.cpp:693] Ignoring source layer prob
I1112 13:43:52.188726 17193 solver.cpp:404] Test net output #0: accuracy = 0.99816
I1112 13:43:52.225473 17193 solver.cpp:228] Iteration 170000, loss = 0.00484233
I1112 13:43:52.225527 17193 solver.cpp:244] Train net output #0: loss = 0.00484425 (* 1 = 0.00484425 loss)
I1112 13:43:52.225543 17193 sgd_solver.cpp:106] Iteration 170000, lr = 3.99375e-06
I1112 13:46:02.637689 17193 solver.cpp:228] Iteration 171000, loss = 0.00115312
I1112 13:46:02.637819 17193 solver.cpp:244] Train net output #0: loss = 0.00115499 (* 1 = 0.00115499 loss)
I1112 13:46:02.637831 17193 sgd_solver.cpp:106] Iteration 171000, lr = 3.97622e-06
I1112 13:48:13.054709 17193 solver.cpp:228] Iteration 172000, loss = 0.00362315
I1112 13:48:13.054800 17193 solver.cpp:244] Train net output #0: loss = 0.00362504 (* 1 = 0.00362504 loss)
I1112 13:48:13.054814 17193 sgd_solver.cpp:106] Iteration 172000, lr = 3.95887e-06
I1112 13:50:23.471549 17193 solver.cpp:228] Iteration 173000, loss = 0.00207071
I1112 13:50:23.471642 17193 solver.cpp:244] Train net output #0: loss = 0.00207262 (* 1 = 0.00207262 loss)
I1112 13:50:23.471658 17193 sgd_solver.cpp:106] Iteration 173000, lr = 3.9417e-06
I1112 13:52:33.881455 17193 solver.cpp:228] Iteration 174000, loss = 0.00317128
I1112 13:52:33.881547 17193 solver.cpp:244] Train net output #0: loss = 0.0031732 (* 1 = 0.0031732 loss)
I1112 13:52:33.881559 17193 sgd_solver.cpp:106] Iteration 174000, lr = 3.9247e-06
I1112 13:54:44.145556 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_175000.caffemodel
I1112 13:55:18.169812 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_175000.solverstate
I1112 13:55:18.308523 17193 solver.cpp:337] Iteration 175000, Testing net (#0)
I1112 13:55:18.308573 17193 net.cpp:693] Ignoring source layer drop1
I1112 13:55:18.308581 17193 net.cpp:693] Ignoring source layer prob
I1112 13:55:25.506369 17193 solver.cpp:404] Test net output #0: accuracy = 0.9984
I1112 13:55:25.541895 17193 solver.cpp:228] Iteration 175000, loss = 0.019802
I1112 13:55:25.541941 17193 solver.cpp:244] Train net output #0: loss = 0.019804 (* 1 = 0.019804 loss)
I1112 13:55:25.541956 17193 sgd_solver.cpp:106] Iteration 175000, lr = 3.90787e-06
I1112 13:57:35.932982 17193 solver.cpp:228] Iteration 176000, loss = 0.0364714
I1112 13:57:35.933084 17193 solver.cpp:244] Train net output #0: loss = 0.0364734 (* 1 = 0.0364734 loss)
I1112 13:57:35.933107 17193 sgd_solver.cpp:106] Iteration 176000, lr = 3.8912e-06
I1112 13:59:46.346225 17193 solver.cpp:228] Iteration 177000, loss = 0.0167498
I1112 13:59:46.346341 17193 solver.cpp:244] Train net output #0: loss = 0.0167518 (* 1 = 0.0167518 loss)
I1112 13:59:46.346354 17193 sgd_solver.cpp:106] Iteration 177000, lr = 3.8747e-06
I1112 14:01:56.745548 17193 solver.cpp:228] Iteration 178000, loss = 0.0024755
I1112 14:01:56.745656 17193 solver.cpp:244] Train net output #0: loss = 0.00247749 (* 1 = 0.00247749 loss)
I1112 14:01:56.745679 17193 sgd_solver.cpp:106] Iteration 178000, lr = 3.85837e-06
I1112 14:04:07.154556 17193 solver.cpp:228] Iteration 179000, loss = 0.0103652
I1112 14:04:07.154656 17193 solver.cpp:244] Train net output #0: loss = 0.0103672 (* 1 = 0.0103672 loss)
I1112 14:04:07.154680 17193 sgd_solver.cpp:106] Iteration 179000, lr = 3.84219e-06
I1112 14:06:17.423765 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_180000.caffemodel
I1112 14:06:44.626078 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_180000.solverstate
I1112 14:06:45.114624 17193 solver.cpp:337] Iteration 180000, Testing net (#0)
I1112 14:06:45.114677 17193 net.cpp:693] Ignoring source layer drop1
I1112 14:06:45.114686 17193 net.cpp:693] Ignoring source layer prob
I1112 14:06:52.326354 17193 solver.cpp:404] Test net output #0: accuracy = 0.99864
I1112 14:06:52.362536 17193 solver.cpp:228] Iteration 180000, loss = 0.00127268
I1112 14:06:52.362591 17193 solver.cpp:244] Train net output #0: loss = 0.0012747 (* 1 = 0.0012747 loss)
I1112 14:06:52.362607 17193 sgd_solver.cpp:106] Iteration 180000, lr = 3.82617e-06
I1112 14:09:02.778605 17193 solver.cpp:228] Iteration 181000, loss = 0.00491031
I1112 14:09:02.778676 17193 solver.cpp:244] Train net output #0: loss = 0.00491233 (* 1 = 0.00491233 loss)
I1112 14:09:02.778690 17193 sgd_solver.cpp:106] Iteration 181000, lr = 3.8103e-06
I1112 14:11:13.199157 17193 solver.cpp:228] Iteration 182000, loss = 0.00229318
I1112 14:11:13.199239 17193 solver.cpp:244] Train net output #0: loss = 0.00229517 (* 1 = 0.00229517 loss)
I1112 14:11:13.199254 17193 sgd_solver.cpp:106] Iteration 182000, lr = 3.79459e-06
I1112 14:13:23.609714 17193 solver.cpp:228] Iteration 183000, loss = 0.00537014
I1112 14:13:23.609818 17193 solver.cpp:244] Train net output #0: loss = 0.00537213 (* 1 = 0.00537213 loss)
I1112 14:13:23.609843 17193 sgd_solver.cpp:106] Iteration 183000, lr = 3.77903e-06
I1112 14:15:34.022562 17193 solver.cpp:228] Iteration 184000, loss = 0.00498535
I1112 14:15:34.022645 17193 solver.cpp:244] Train net output #0: loss = 0.00498734 (* 1 = 0.00498734 loss)
I1112 14:15:34.022657 17193 sgd_solver.cpp:106] Iteration 184000, lr = 3.76362e-06
I1112 14:17:44.318693 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_185000.caffemodel
I1112 14:18:18.603253 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_185000.solverstate
I1112 14:18:18.742889 17193 solver.cpp:337] Iteration 185000, Testing net (#0)
I1112 14:18:18.742936 17193 net.cpp:693] Ignoring source layer drop1
I1112 14:18:18.742944 17193 net.cpp:693] Ignoring source layer prob
I1112 14:18:25.940750 17193 solver.cpp:404] Test net output #0: accuracy = 0.99832
I1112 14:18:25.978945 17193 solver.cpp:228] Iteration 185000, loss = 0.00899024
I1112 14:18:25.978996 17193 solver.cpp:244] Train net output #0: loss = 0.00899222 (* 1 = 0.00899222 loss)
I1112 14:18:25.979010 17193 sgd_solver.cpp:106] Iteration 185000, lr = 3.74835e-06
I1112 14:20:36.377446 17193 solver.cpp:228] Iteration 186000, loss = 0.00132623
I1112 14:20:36.377537 17193 solver.cpp:244] Train net output #0: loss = 0.00132819 (* 1 = 0.00132819 loss)
I1112 14:20:36.377549 17193 sgd_solver.cpp:106] Iteration 186000, lr = 3.73322e-06
I1112 14:22:46.792145 17193 solver.cpp:228] Iteration 187000, loss = 0.0123942
I1112 14:22:46.792232 17193 solver.cpp:244] Train net output #0: loss = 0.0123961 (* 1 = 0.0123961 loss)
I1112 14:22:46.792243 17193 sgd_solver.cpp:106] Iteration 187000, lr = 3.71824e-06
I1112 14:24:57.221042 17193 solver.cpp:228] Iteration 188000, loss = 0.0152676
I1112 14:24:57.221150 17193 solver.cpp:244] Train net output #0: loss = 0.0152695 (* 1 = 0.0152695 loss)
I1112 14:24:57.221166 17193 sgd_solver.cpp:106] Iteration 188000, lr = 3.7034e-06
I1112 14:27:07.632160 17193 solver.cpp:228] Iteration 189000, loss = 0.001701
I1112 14:27:07.632271 17193 solver.cpp:244] Train net output #0: loss = 0.00170291 (* 1 = 0.00170291 loss)
I1112 14:27:07.632294 17193 sgd_solver.cpp:106] Iteration 189000, lr = 3.68869e-06
I1112 14:29:17.897347 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_190000.caffemodel
I1112 14:29:49.584887 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_190000.solverstate
I1112 14:29:49.833911 17193 solver.cpp:337] Iteration 190000, Testing net (#0)
I1112 14:29:49.833957 17193 net.cpp:693] Ignoring source layer drop1
I1112 14:29:49.833968 17193 net.cpp:693] Ignoring source layer prob
I1112 14:29:57.040351 17193 solver.cpp:404] Test net output #0: accuracy = 0.99856
I1112 14:29:57.076380 17193 solver.cpp:228] Iteration 190000, loss = 0.00283433
I1112 14:29:57.076432 17193 solver.cpp:244] Train net output #0: loss = 0.00283622 (* 1 = 0.00283622 loss)
I1112 14:29:57.076447 17193 sgd_solver.cpp:106] Iteration 190000, lr = 3.67412e-06
I1112 14:32:07.479351 17193 solver.cpp:228] Iteration 191000, loss = 0.00385901
I1112 14:32:07.479506 17193 solver.cpp:244] Train net output #0: loss = 0.00386094 (* 1 = 0.00386094 loss)
I1112 14:32:07.479521 17193 sgd_solver.cpp:106] Iteration 191000, lr = 3.65969e-06
I1112 14:34:17.892268 17193 solver.cpp:228] Iteration 192000, loss = 0.0019228
I1112 14:34:17.892341 17193 solver.cpp:244] Train net output #0: loss = 0.00192478 (* 1 = 0.00192478 loss)
I1112 14:34:17.892355 17193 sgd_solver.cpp:106] Iteration 192000, lr = 3.64538e-06
I1112 14:36:28.311589 17193 solver.cpp:228] Iteration 193000, loss = 0.00309389
I1112 14:36:28.311712 17193 solver.cpp:244] Train net output #0: loss = 0.00309589 (* 1 = 0.00309589 loss)
I1112 14:36:28.311728 17193 sgd_solver.cpp:106] Iteration 193000, lr = 3.63121e-06
I1112 14:38:38.708379 17193 solver.cpp:228] Iteration 194000, loss = 0.00556743
I1112 14:38:38.708504 17193 solver.cpp:244] Train net output #0: loss = 0.0055694 (* 1 = 0.0055694 loss)
I1112 14:38:38.708519 17193 sgd_solver.cpp:106] Iteration 194000, lr = 3.61716e-06
I1112 14:40:48.997328 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_195000.caffemodel
I1112 14:41:16.874796 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_195000.solverstate
I1112 14:41:17.405606 17193 solver.cpp:337] Iteration 195000, Testing net (#0)
I1112 14:41:17.405654 17193 net.cpp:693] Ignoring source layer drop1
I1112 14:41:17.405738 17193 net.cpp:693] Ignoring source layer prob
I1112 14:41:24.609372 17193 solver.cpp:404] Test net output #0: accuracy = 0.99784
I1112 14:41:24.645936 17193 solver.cpp:228] Iteration 195000, loss = 0.00878175
I1112 14:41:24.645985 17193 solver.cpp:244] Train net output #0: loss = 0.00878371 (* 1 = 0.00878371 loss)
I1112 14:41:24.645998 17193 sgd_solver.cpp:106] Iteration 195000, lr = 3.60324e-06
I1112 14:43:35.080152 17193 solver.cpp:228] Iteration 196000, loss = 0.00639998
I1112 14:43:35.080296 17193 solver.cpp:244] Train net output #0: loss = 0.00640191 (* 1 = 0.00640191 loss)
I1112 14:43:35.080308 17193 sgd_solver.cpp:106] Iteration 196000, lr = 3.58944e-06
I1112 14:45:45.514504 17193 solver.cpp:228] Iteration 197000, loss = 0.00573645
I1112 14:45:45.514578 17193 solver.cpp:244] Train net output #0: loss = 0.00573838 (* 1 = 0.00573838 loss)
I1112 14:45:45.514593 17193 sgd_solver.cpp:106] Iteration 197000, lr = 3.57577e-06
I1112 14:47:55.910053 17193 solver.cpp:228] Iteration 198000, loss = 0.0153792
I1112 14:47:55.910140 17193 solver.cpp:244] Train net output #0: loss = 0.0153811 (* 1 = 0.0153811 loss)
I1112 14:47:55.910156 17193 sgd_solver.cpp:106] Iteration 198000, lr = 3.56222e-06
I1112 14:50:06.333660 17193 solver.cpp:228] Iteration 199000, loss = 0.000937186
I1112 14:50:06.333837 17193 solver.cpp:244] Train net output #0: loss = 0.000939126 (* 1 = 0.000939126 loss)
I1112 14:50:06.333853 17193 sgd_solver.cpp:106] Iteration 199000, lr = 3.54878e-06
I1112 14:52:16.605937 17193 solver.cpp:454] Snapshotting to binary proto file snapshots/snap__iter_200000.caffemodel
I1112 14:52:44.548648 17193 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshots/snap__iter_200000.solverstate
I1112 14:52:45.106608 17193 solver.cpp:317] Iteration 200000, loss = 0.00837767
I1112 14:52:45.106654 17193 solver.cpp:337] Iteration 200000, Testing net (#0)
I1112 14:52:45.106667 17193 net.cpp:693] Ignoring source layer drop1
I1112 14:52:45.106676 17193 net.cpp:693] Ignoring source layer prob
I1112 14:52:52.327410 17193 solver.cpp:404] Test net output #0: accuracy = 0.99872
I1112 14:52:52.327476 17193 solver.cpp:322] Optimization Done.
I1112 14:52:52.327486 17193 caffe.cpp:254] Optimization Done.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment