Created
April 4, 2025 14:27
-
-
Save Lysxia/1be11766da31d4a1bbe30cf4ff8e9485 to your computer and use it in GitHub Desktop.
Agda formalization of the reduction relation for explicit substitutions in https://dl.acm.org/doi/pdf/10.1145/3498669
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- A fine-grained computational interpretation of Girard's intuitionistic proof-nets | |
-- by Delia Kesner | |
-- https://dl.acm.org/doi/pdf/10.1145/3498669 | |
-- | |
-- - Definition of the reduction relation | |
module CS where | |
open import Data.Empty | |
open import Data.Sum | |
open import Function.Base | |
open import Relation.Nullary using (contradiction) | |
open import Relation.Binary.PropositionalEquality.Core | |
data Scope : Set where | |
∅ : Scope | |
S_ : Scope → Scope | |
variable Γ Γ′ : Scope | |
data Thinning : Scope → Scope → Set where | |
∅ : Thinning ∅ ∅ | |
S_ : Thinning Γ Γ′ → Thinning Γ (S Γ′) | |
both : Thinning Γ Γ′ → Thinning (S Γ) (S Γ′) | |
idᵀ : Thinning Γ Γ | |
idᵀ {Γ = ∅} = ∅ | |
idᵀ {Γ = S Γ} = both idᵀ | |
predᴸ : Thinning (S Γ) Γ′ → Thinning Γ Γ′ | |
predᴸ (S t) = S predᴸ t | |
predᴸ (both t) = S t | |
data Var : Scope → Set where | |
O : {Γ : Scope} → Var (S Γ) | |
S_ : {Γ : Scope} → Var Γ → Var (S Γ) | |
data Term (Γ : Scope) : Set where | |
`_ : Var Γ → Term Γ | |
ƛ_ : Term (S Γ) → Term Γ | |
_·_ : Term Γ → Term Γ → Term Γ | |
_[_↦_] : Term (S Γ) → Var (S Γ) → Term Γ → Term Γ | |
thinⱽ : Thinning Γ Γ′ → Var Γ → Var Γ′ | |
thinⱽ ∅ () | |
thinⱽ (S τ) x = S thinⱽ τ x | |
thinⱽ (both τ) O = O | |
thinⱽ (both τ) (S x) = S thinⱽ τ x | |
thin : Thinning Γ Γ′ → Term Γ → Term Γ′ | |
thin τ (` x) = ` thinⱽ τ x | |
thin τ (ƛ t) = ƛ thin (both τ) t | |
thin τ (t · t₁) = thin τ t · thin τ t₁ | |
thin τ (t [ x ↦ t₁ ]) = thin (both τ) t [ thinⱽ (both τ) x ↦ thin τ t₁ ] | |
V→T : Var (S Γ) → Thinning Γ (S Γ) | |
V→T O = S idᵀ | |
V→T {Γ = S Γ} (S y) = both (V→T y) | |
data ArgContext (Γ : Scope) : Set where | |
_·□ : Term Γ → ArgContext Γ | |
_[_↦□] : Term (S Γ) → Var (S Γ) → ArgContext Γ | |
_⟨_⟩ᴬ : {Γ : Scope} → ArgContext Γ → Term Γ → Term Γ | |
(u ·□) ⟨ t ⟩ᴬ = u · t | |
(u [ y ↦□]) ⟨ t ⟩ᴬ = u [ y ↦ t ] | |
data HeadContext (Γ : Scope) : Scope → Set where | |
□ : HeadContext Γ Γ | |
ƛ_ : {Γ′ : Scope} → HeadContext (S Γ) Γ′ → HeadContext Γ Γ′ | |
_·_ : {Γ′ : Scope} → HeadContext Γ Γ′ → Term Γ → HeadContext Γ Γ′ | |
_[_↦_] : {Γ′ : Scope} → | |
HeadContext (S Γ) Γ′ → Var (S Γ) → Term Γ → HeadContext Γ Γ′ | |
infix 9 _·_ | |
infix 9 ƛ_ | |
_⟨_⟩ᴴ : {Γ Γ′ : Scope} → HeadContext Γ Γ′ → Term Γ′ → Term Γ | |
□ ⟨ t ⟩ᴴ = t | |
(ƛ H) ⟨ t ⟩ᴴ = ƛ H ⟨ t ⟩ᴴ | |
(H · u) ⟨ t ⟩ᴴ = H ⟨ t ⟩ᴴ · u | |
(H [ y ↦ u ]) ⟨ t ⟩ᴴ = H ⟨ t ⟩ᴴ [ y ↦ u ] | |
H→T : HeadContext Γ Γ′ → Thinning Γ Γ′ | |
H→T □ = idᵀ | |
H→T (ƛ H) = predᴸ (H→T H) | |
H→T (H · x) = H→T H | |
H→T (H [ x ↦ x₁ ]) = predᴸ (H→T H) | |
_⟪_⟫ᴴ : {Γ Γ′ : Scope} → HeadContext Γ Γ′ → Term Γ → Term Γ | |
H ⟪ t ⟫ᴴ = H ⟨ thin (H→T H) t ⟩ᴴ | |
data ListContext (Γ : Scope) : Scope → Set where | |
□ : ListContext Γ Γ | |
_[_↦_] : {Γ′ : Scope} → | |
ListContext (S Γ) Γ′ → Var (S Γ) → Term Γ → ListContext Γ Γ′ | |
_⟨_⟩ᴸ : {Γ Γ′ : Scope} → ListContext Γ Γ′ → Term Γ′ → Term Γ | |
□ ⟨ t ⟩ᴸ = t | |
(H [ y ↦ u ]) ⟨ t ⟩ᴸ = H ⟨ t ⟩ᴸ [ y ↦ u ] | |
L→T : ListContext Γ Γ′ → Thinning Γ Γ′ | |
L→T □ = idᵀ | |
L→T (L [ x ↦ t ]) = predᴸ (L→T L) | |
infix 9 `_ | |
infix 1 _∉free_ _∉freeᴴ_ | |
data _∉free_ (x : Var Γ) : Term Γ → Set where | |
`_ : {y : Var Γ} → x ≢ y → x ∉free ` y | |
ƛ_ : {t : Term (S Γ)} → (S x) ∉free t → x ∉free ƛ t | |
_·_ : {t u : Term Γ} → x ∉free t → x ∉free u → x ∉free (t · u) | |
_[_↦_] : {t : Term (S Γ)} {u : Term Γ} → | |
{y : Var (S Γ)} → | |
thinⱽ (V→T y) x ∉free t → | |
thinⱽ (V→T y) x ≢ y → | |
x ∉free u → | |
x ∉free t [ y ↦ u ] | |
infix 1 _∈free_ | |
data _∈free_ (x : Var Γ) : Term Γ → Set where | |
`_ : x ∈free ` x | |
ƛ_ : {t : Term (S Γ)} → (S x) ∈free t → x ∈free ƛ t | |
_·_ : {t u : Term Γ} → | |
(x ∈free t) ⊎ (x ∈free u) → x ∈free (t · u) | |
_[_↦_] : {t : Term (S Γ)} {u : Term Γ} → | |
{y : Var (S Γ)} → | |
thinⱽ (V→T y) x ∈free t → | |
thinⱽ (V→T y) x ≢ y → | |
x ∈free u → | |
x ∈free t [ y ↦ u ] | |
infix 1 _∉freeᴬ_ _∈freeᴬ_ | |
data _∉freeᴬ_ (x : Var Γ) : ArgContext Γ → Set where | |
_·□ : {t : Term Γ} → x ∉free t → x ∉freeᴬ (t ·□) | |
_[_↦□] : {t : Term (S Γ)} {u : Term Γ} → | |
{y : Var (S Γ)} → | |
thinⱽ (V→T y) x ∉free t → | |
thinⱽ (V→T y) x ≢ y → | |
x ∉freeᴬ t [ y ↦□] | |
data _∈freeᴬ_ (x : Var Γ) : ArgContext Γ → Set where | |
_·□ : {t : Term Γ} → x ∈free t → x ∈freeᴬ (t ·□) | |
_[_↦□] : {t : Term (S Γ)} {u : Term Γ} → | |
{y : Var (S Γ)} → | |
thinⱽ (V→T y) x ∈free t → | |
thinⱽ (V→T y) x ≢ y → | |
x ∈freeᴬ t [ y ↦□] | |
data _∉freeᴴ_ (x : Var Γ) : HeadContext Γ Γ′ → Set where | |
□ : x ∉freeᴴ □ | |
ƛ_ : {H : HeadContext (S Γ) Γ′} → (S x) ∉freeᴴ H → x ∉freeᴴ ƛ H | |
_·_ : {H : HeadContext Γ Γ′} {u : Term Γ} → | |
x ∉freeᴴ H → x ∉free u → x ∉freeᴴ (H · u) | |
_[_↦_] : {H : HeadContext (S Γ) Γ′} {u : Term Γ} → | |
{y : Var (S Γ)} → | |
thinⱽ (V→T y) x ∉freeᴴ H → | |
thinⱽ (V→T y) x ≢ y → | |
x ∉free u → | |
x ∉freeᴴ H [ y ↦ u ] | |
clearⱽ : (y : Var (S Γ)) → {x : Var (S Γ)} → x ≢ y → Var Γ | |
clearⱽ O {x = O} x≢y = contradiction refl x≢y | |
clearⱽ (S y) {x = O} x≢y = y | |
clearⱽ {Γ = S _} O {x = S x} x≢y = O | |
clearⱽ {Γ = S _} (S y) {x = S x} x≢y = S clearⱽ y (x≢y ∘ cong S_) | |
clear : (t : Term (S Γ)) → {x : Var (S Γ)} → x ∉free t → Term Γ | |
clear (` y) (` x≢y) = ` clearⱽ y x≢y | |
clear (ƛ t) (ƛ ∉t) = ƛ clear t ∉t | |
clear (t · t₁) (∉t · ∉t₁) = clear t ∉t · clear t₁ ∉t₁ | |
clear (t [ y ↦ u ]) (∉t [ x≢y ↦ ∉u ]) = clear t ∉t [ clearⱽ y x≢y ↦ clear u ∉u ] | |
clearᴴ : (H : HeadContext (S Γ) (S Γ′)) → {x : Var (S Γ)} → | |
x ∉freeᴴ H → | |
HeadContext Γ Γ′ | |
clearᴴ □ □ = □ | |
clearᴴ (ƛ H) (ƛ ∉H) = ƛ clearᴴ H ∉H | |
clearᴴ (H · t₁) (∉H · ∉t₁) = clearᴴ H ∉H · clear t₁ ∉t₁ | |
clearᴴ (H [ y ↦ u ]) (∉H [ x≢y ↦ ∉u ]) = clearᴴ H ∉H [ clearⱽ y x≢y ↦ clear u ∉u ] | |
clearᴬ : (A : ArgContext (S Γ)) {x : Var (S Γ)} → | |
x ∉freeᴬ A → | |
ArgContext Γ | |
clearᴬ (t ·□) (∉t ·□) = clear t ∉t ·□ | |
clearᴬ (t [ y ↦□]) (∉t [ x≢y ↦□]) = clear t ∉t [ clearⱽ y x≢y ↦□] | |
injective-S : {x y : Var Γ} → S x ≡ S y → x ≡ y | |
injective-S refl = refl | |
thin≢ : (x : Var Γ) (y : Var (S Γ)) → thinⱽ (V→T y) x ≢ y | |
thin≢ (S x) (S y) = thin≢ x y ∘ injective-S | |
_[_↦_]ᴬ : ArgContext (S Γ) → Var (S Γ) → Term Γ → ArgContext Γ | |
(t ·□) [ x ↦ u ]ᴬ = t [ x ↦ u ] ·□ | |
(t [ y ↦□]) [ x ↦ u ]ᴬ = | |
let y′ = (clearⱽ y (thin≢ x y)) in | |
t [ thinⱽ (V→T y) x ↦ thin (V→T y′) u ] [ y′ ↦□] | |
infix 1 _↠_ | |
data _↠_ {Γ : Scope} : Term Γ → Term Γ → Set where | |
db : {Γ′ : Scope} {L : ListContext Γ Γ′} {t : Term (S Γ′)} {u : Term Γ} → | |
L ⟨ ƛ t ⟩ᴸ · u ↠ L ⟨ t [ O ↦ thin (L→T L) u ] ⟩ᴸ | |
gc : {t : Term (S Γ)} {x : Var (S Γ)} {u : Term Γ} → | |
(x∉t : x ∉free t) → | |
t [ x ↦ u ] ↠ clear t x∉t | |
hs : {H : HeadContext (S Γ) (S Γ′)} {x : Var (S Γ)} {u : Term Γ} → | |
(x∉H : x ∉freeᴴ H) → | |
H ⟪ ` x ⟫ᴴ [ x ↦ u ] ↠ clearᴴ H x∉H ⟪ u ⟫ᴴ | |
arg : {H : HeadContext (S Γ) (S Γ′)} {A : ArgContext (S Γ′)} {t : Term (S Γ′)} | |
{x : Var (S Γ)} {u : Term Γ} → | |
(x∉H : x ∉freeᴴ H) → | |
(let x′ = thinⱽ (H→T H) x) | |
(x∈t : x′ ∈free t) → | |
(x∉A : x′ ∉freeᴬ A) → | |
H ⟨ A ⟨ t ⟩ᴬ ⟩ᴴ [ x ↦ u ] ↠ | |
clearᴴ H x∉H ⟨ clearᴬ A x∉A ⟨ t [ x′ ↦ thin (H→T (clearᴴ H x∉H)) u ] ⟩ᴬ ⟩ᴴ | |
dup : {H : HeadContext (S Γ) (S Γ′)} {A : ArgContext (S Γ′)} {t : Term (S Γ′)} | |
{x : Var (S Γ)} {u : Term Γ} → | |
(x∉H : x ∉freeᴴ H) → | |
(let x′ = thinⱽ (H→T H) x) | |
(x∈t : x′ ∈free t) → | |
(x∈A : x′ ∈freeᴬ A) → | |
H ⟨ A ⟨ t ⟩ᴬ ⟩ᴴ [ x ↦ u ] ↠ | |
let H′ = clearᴴ H x∉H in | |
H′ ⟨ A [ thinⱽ (H→T H) x ↦ thin (H→T H′) u ]ᴬ | |
⟨ t [ x′ ↦ thin (H→T H′) u ] ⟩ᴬ ⟩ᴴ | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment