Last active
November 3, 2022 09:14
-
-
Save Lysxia/24bc08e7c95aa5594d51e70b9d3842eb to your computer and use it in GitHub Desktop.
Seven Trees in One https://proofassistants.stackexchange.com/questions/1814/seven-trees-in-one-or-how-to-formalize-the-semiring-of-types/1817#1817
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- 1. Prove X⁷≡X in the polynomial quotient semiring ℕ[X]/(X≡X²+1) | |
-- 2. Define a map toType : ℕ[X]/(X≡X²+1) → Type, | |
-- using the semiring structure of Type and the fact that | |
-- the equation T≡T²+1 holds for the type of binary trees T. | |
-- 3. We deduce T⁷ ≡ T, by T⁷ ≡ toType X⁷ ≡ toType X ≡ T | |
-- 4. ??? | |
-- 5. Profit | |
{-# OPTIONS --cubical #-} | |
module S where | |
open import Cubical.Core.Everything | |
open import Cubical.Foundations.Isomorphism | |
open import Cubical.Foundations.Univalence | |
open import Cubical.Foundations.Structure | |
open import Cubical.Foundations.Prelude | |
open import Cubical.Foundations.Function | |
open import Cubical.Foundations.Transport | |
open import Cubical.Foundations.HLevels | |
open import Cubical.Data.Sigma | |
open import Cubical.Data.Sum | |
open import Cubical.Data.Unit | |
open import Cubical.Data.Nat using (ℕ; zero; suc) | |
pattern 3+_ n = suc (suc (suc n)) | |
pattern 2+_ n = suc (suc n) | |
pattern 1+_ n = suc n | |
infixl 6 _+_ | |
-- * Part 1: X ≡ X²+1 → X⁷ ≡ X | |
-- | |
-- (X⁷≡X is the name of the final theorem.) | |
-- The proof follows Seven Trees in One (p 6) https://arxiv.org/pdf/math/9405205.pdf | |
-- | |
-- X^7 = X^7 + X^4 + X = X | |
-- by lemma X^(1+r) = X^(1+r) + X^(k+3) + X^k | |
-- used twice, with r=6,k=1 and with r=0,k=4. | |
-- (here we only give ad hoc proofs for those two instances) | |
-- The semiring ℕ[X]/(X≡X²+1) | |
-- This actually only requires a minimal set of axioms (weaker than semirings) | |
-- to prove X⁷≡X. | |
data ℕ[X]/tree : Type where | |
_+_ : ℕ[X]/tree → ℕ[X]/tree → ℕ[X]/tree | |
X^ : ℕ → ℕ[X]/tree | |
+-comm : {a b : ℕ[X]/tree} → a + b ≡ b + a | |
+-assoc : {a b c : ℕ[X]/tree} → a + b + c ≡ a + (b + c) | |
tree : ∀ n → X^ (1+ n) ≡ X^ (2+ n) + X^ n | |
treeʳ : ∀ {a} n → a + X^ (suc n) ≡ a + X^ (suc (suc n)) + X^ n | |
treeʳ {a} n = | |
a + X^ (suc n) ≡[ i ]⟨ a + tree n i ⟩ | |
a + (X^ (suc (suc n)) + X^ n) ≡⟨ sym +-assoc ⟩ | |
a + X^ (suc (suc n)) + X^ n ∎ | |
-- X^ (n + i) + ... + X^ n (left associated) | |
X^[_+_] : ℕ → ℕ → ℕ[X]/tree | |
X^[ n + suc i ] = X^[ suc n + i ] + X^ n | |
X^[ n + zero ] = X^ n | |
X²≡X²+X³+1 : ∀ {a} n → a + X^ (2+ n) ≡ a + X^ (2+ n) + X^ (3+ n) + X^ n | |
X²≡X²+X³+1 {a} n = | |
a + X^ (suc (suc n)) ≡⟨ treeʳ (suc n) ⟩ | |
a + X^ (suc (suc (suc n))) + X^ (suc n) ≡⟨ treeʳ n ⟩ | |
a + X^ (suc (suc (suc n))) + X^ (suc (suc n)) + X^ n ≡⟨ cong (_+ X^ n) +-assoc ⟩ | |
a + (X^ (suc (suc (suc n))) + X^ (suc (suc n))) + X^ n ≡⟨ cong (λ x → a + x + X^ n) +-comm ⟩ | |
a + (X^ (suc (suc n)) + X^ (suc (suc (suc n)))) + X^ n ≡⟨ cong (_+ X^ n) (sym +-assoc) ⟩ | |
a + X^ (suc (suc n)) + X^ (suc (suc (suc n))) + X^ n ∎ | |
X⁷≡X⁷+X⁴+X : X^ 7 ≡ X^ 7 + X^ 4 + X^ 1 | |
X⁷≡X⁷+X⁴+X = | |
X^ 7 ≡⟨ expand-X⁷ ⟩ | |
X^[ 5 + 3 ] + X^ 3 ≡⟨ X²≡X²+X³+1 1 ⟩ | |
X^[ 5 + 3 ] + X^ 3 + X^ 4 + X^ 1 ≡[ i ]⟨ expand-X⁷ (~ i) + X^ 4 + X^ 1 ⟩ | |
X^ 7 + X^ 4 + X^ 1 ∎ | |
where | |
expand-X⁷ : X^ 7 ≡ X^[ 5 + 3 ] + X^ 3 | |
expand-X⁷ = | |
X^ 7 ≡⟨ tree 6 ⟩ | |
X^ 8 + X^ 6 ≡⟨ treeʳ 5 ⟩ | |
X^[ 7 + 1 ] + X^ 5 ≡⟨ treeʳ 4 ⟩ | |
X^[ 6 + 2 ] + X^ 4 ≡⟨ treeʳ 3 ⟩ | |
X^[ 5 + 3 ] + X^ 3 ∎ | |
treeˡ : ∀ {a} n → X^ (suc n) + a ≡ X^ (suc (suc n)) + (X^ n + a) | |
treeˡ {a} n = | |
X^ (suc n) + a ≡[ i ]⟨ tree n i + a ⟩ | |
X^ (suc (suc n)) + X^ n + a ≡⟨ +-assoc ⟩ | |
X^ (suc (suc n)) + (X^ n + a) ∎ | |
X³+1+X≡X : ∀ {a} n → X^ (3+ n) + X^ n + (X^ (1+ n) + a) ≡ X^ (1+ n) + a | |
X³+1+X≡X {a} n = | |
X^ (3+ n) + X^ n + (X^ (1+ n) + a) ≡⟨ cong (_+ (X^ (1+ n) + a)) +-comm ⟩ | |
X^ n + X^ (3+ n) + (X^ (1+ n) + a) ≡⟨ sym +-assoc ⟩ | |
X^ n + X^ (3+ n) + X^ (1+ n) + a ≡⟨ cong (_+ a) (sym (treeʳ (1+ n))) ⟩ | |
X^ n + X^ (2+ n) + a ≡⟨ cong (_+ a) +-comm ⟩ | |
X^ (2+ n) + X^ n + a ≡⟨ cong (_+ a) (sym (tree n)) ⟩ | |
X^ (1+ n) + a ∎ | |
X⁷+X⁴+X≡X : X^ 7 + X^ 4 + X^ 1 ≡ X^ 1 | |
X⁷+X⁴+X≡X = | |
X^ 7 + X^ 4 + X^ 1 ≡[ i ]⟨ X^ 7 + X^ 4 + expand-X i ⟩ | |
X^ 7 + X^ 4 + (X^ 5 + _) ≡⟨ X³+1+X≡X 4 ⟩ | |
X^ 5 + _ ≡⟨ sym expand-X ⟩ | |
X^ 1 ∎ | |
where | |
expand-X : X^ 1 ≡ X^ 5 + _ | |
expand-X = | |
X^ 1 ≡⟨ tree 0 ⟩ | |
X^ 2 + _ ≡⟨ treeˡ 1 ⟩ | |
X^ 3 + _ ≡⟨ treeˡ 2 ⟩ | |
X^ 4 + _ ≡⟨ treeˡ 3 ⟩ | |
X^ 5 + (X^ 3 + (X^ 2 + (X^ 1 + X^ 0))) ∎ | |
X⁷≡X : X^ 7 ≡ X^ 1 | |
X⁷≡X = | |
X^ 7 ≡⟨ X⁷≡X⁷+X⁴+X ⟩ | |
X^ 7 + X^ 4 + X^ 1 ≡⟨ X⁷+X⁴+X≡X ⟩ | |
X^ 1 ∎ | |
-- * Part 2: Tree as a solution of the equation X ≡ X²+1 | |
-- | |
-- (toType is the name of the final theorem.) | |
data Tree : Type where | |
Leaf : Tree | |
Node : Tree → Tree → Tree | |
⊎-comm : ∀ {A B : Type} → A ⊎ B ≡ B ⊎ A | |
⊎-comm = isoToPath ⊎-swap-Iso | |
⊎-assoc : ∀ {A B C : Type} → (A ⊎ B) ⊎ C ≡ A ⊎ (B ⊎ C) | |
⊎-assoc = isoToPath ⊎-assoc-Iso | |
open Iso | |
Iso-Tree-tree : (A : Type) → Iso (Tree × A) ((Tree × Tree × A) ⊎ A) | |
Iso-Tree-tree A .fun (Node t₁ t₂ , a) = inl (t₁ , t₂ , a) | |
Iso-Tree-tree A .fun (Leaf , a) = inr a | |
Iso-Tree-tree A .inv (inl (t₁ , t₂ , a)) = Node t₁ t₂ , a | |
Iso-Tree-tree A .inv (inr a) = Leaf , a | |
Iso-Tree-tree A .rightInv (inl (t₁ , t₂ , a)) = refl | |
Iso-Tree-tree A .rightInv (inr a) = refl | |
Iso-Tree-tree A .leftInv (Node t₁ t₂ , a) = refl | |
Iso-Tree-tree A .leftInv (Leaf , a) = refl | |
Tree-tree : (A : Type) → (Tree × A) ≡ ((Tree × Tree × A) ⊎ A) | |
Tree-tree A = isoToPath (Iso-Tree-tree A) | |
Tree^ : (n : ℕ) → Type | |
Tree^ 0 = Unit | |
Tree^ (1+ n) = Tree × Tree^ n | |
-- This is essentially a way to define a semiring using a HIT. | |
-- Under univalence (which is used by isoToPath), Type is a semiring. | |
toType : ℕ[X]/tree → Type | |
toType (a + b) = toType a ⊎ toType b | |
toType (X^ n) = Tree^ n | |
toType (+-comm {a} {b} i) = ⊎-comm {toType a} {toType b} i | |
toType (+-assoc {a} {b} {c} i) = ⊎-assoc {toType a} {toType b} {toType c} i | |
toType (tree n i) = Tree-tree (toType (X^ n)) i | |
-- * Part 3: X⁷≡X ⇒ toType X⁷ ≡ toType X ⇒ Tree⁷ ≡ Tree ⇒ Iso Tree⁷ Tree | |
Iso-Tree⁷-Tree : Iso (Tree^ 7) Tree | |
Iso-Tree⁷-Tree = | |
Tree^ 7 Iso⟨ pathToIso (λ i → toType (X⁷≡X i)) ⟩ | |
Tree × Unit Iso⟨ rUnit×Iso ⟩ | |
Tree ∎Iso | |
-- * Examples | |
f = Iso-Tree⁷-Tree | |
_ : fun f (Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , tt) ≡ Leaf | |
_ = refl | |
_ : fun f (Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , Node Leaf Leaf , tt) | |
≡ Node Leaf Leaf | |
_ = refl | |
_ : fun f (Node Leaf Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , tt) | |
≡ Node (Node (Node (Node (Node (Node (Node Leaf Leaf) Leaf) Leaf) Leaf) Leaf) Leaf) Leaf | |
_ = refl | |
_ : fun f (Node Leaf Leaf , Node Leaf Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , tt) | |
≡ Node (Node (Node (Node (Node (Node (Node Leaf Leaf) (Node Leaf Leaf)) Leaf) Leaf) Leaf) Leaf) Leaf | |
_ = refl | |
_ : inv f Leaf ≡ (Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , tt) | |
_ = refl -- When you ask Agda to normalize this goal, it gets stuck on transp, lots of transp. But refl still typechecks. | |
_ : inv f (Node Leaf Leaf) ≡ (Leaf , Leaf , Leaf , Leaf , Leaf , Leaf , Node Leaf Leaf , tt) | |
_ = refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment