Created
February 25, 2019 14:18
-
-
Save Lysxia/5485709c4594b836113736626070f488 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Set Implicit Arguments. | |
| Set Contextual Implicit. | |
| Notation TyCon := (Type -> Type). | |
| Inductive Prog {T : Type} (sig : T -> Type -> TyCon) (a : Type) : Type := | |
| | Ret : a -> Prog sig a | |
| | Op (t : T) : (forall b, sig t a b -> Prog sig b) -> Prog sig a | |
| . | |
| Inductive App_F (a : Type) : TyCon := | |
| | App_ (b : bool) : App_F a a | |
| . | |
| Inductive Lam_F (a : Type) : TyCon := | |
| | Lam_ : Lam_F a (unit + a) | |
| . | |
| Definition LC_sig (b : bool) : Type -> TyCon := | |
| match b with | |
| | true => App_F | |
| | false => Lam_F | |
| end. | |
| Definition LC : TyCon := Prog LC_sig. | |
| Definition App {A} (x y : LC A) : LC A := | |
| Op true (fun _ f => | |
| match f in App_F _ B return LC B with | |
| | App_ true => x | |
| | App_ false => y | |
| end). | |
| Definition Lam {A} (x : LC (unit + A)) : LC A := | |
| Op false (fun _ f => | |
| match f in Lam_F _ B return LC B with | |
| | Lam_ => x | |
| end). | |
| (* \x -> x*) | |
| Definition id_lc {a} : LC a := Lam (Ret (inl tt)). | |
| (* \f x -> f x x *) | |
| Definition omega {a} : LC a := | |
| Lam (* f *) (Lam (* x *) | |
| (let f := Ret (inr (inl tt)) in | |
| let x := Ret (inl tt) in | |
| App (App f x) x)). |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment