Last active
October 19, 2019 17:10
-
-
Save MCMXCIII/2a7f83670e3f3d35c745d8d8ef53bdd0 to your computer and use it in GitHub Desktop.
Finished Single line?
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import mathplotlib.pyploy as plt | |
immport seaborn as seabornInstance.model_selection | |
from sklearn import train_test_split | |
from sklearn.linear_model import LinearRegression | |
from sklearn iport metrics | |
%mathplotlib inline | |
dataset= pd.read_csv("path to csv dataset CLEAN PLEASE-DEFINE VARS") | |
dataset.shape | |
#incoming set to start model | |
''' | |
dataset.plot(x='MinTemp',y='MaxTemp', style='o') | |
plt.title() | |
plt.xlabel() | |
plt.ylabel() | |
plt.show() | |
''' | |
#Showing figures | |
''' | |
plt.figure(figsize=(15,10)) | |
plt.tight_layout() | |
seabornInstance.distplot(dataset['Maxtemp']) | |
''' | |
#dividing the data simple figure | |
X= dataset['MinTemp'].values.reshape(-1,1) | |
y= dataset['MinTemp'].values.reshape(-1,1) | |
#TRAINING! | |
X_train, X_testx y_train, y_test = train_test_split(X,y,test_size-0.2, random_state=0) | |
#Training this algo | |
regressor = LinearRegression() | |
regressor.fir(X_train, y_train) | |
#retrieve intercept | |
print(regressor.intercept) | |
#For retrieving the slope | |
print(regressor.coef_) | |
#Make some predictions | |
y_pred = regressor.preddict(X_test) | |
#compare output for X_test | |
#This is a Dataframe now | |
df = pd..DataFrame({'Actual': y_test.flaten(), 'Predictied':y_pred.flatten()}) | |
# now visualize everything | |
df1 = df.head(25) | |
df1.plot(kind='bar ', figsize=(16,10)) | |
plt.grid(which='major',linestyle='-', linewidth='0.5', color='blue') | |
plt.grid(which='minor',linestyle=':', linewidth='0.5', color='black') | |
plt.show | |
#plot dem lines brah | |
plt.scatter(X_test, y_test, color='grey') | |
plt.plot(X_test,y_test,color='red',linewidth=2) | |
plt.show | |
#Multiline Regression | |
#check the next file | |
from sklearn import lineadr_model | |
#reg = linear_model.LinearRegression() | |
#reg.fit([]) | |
#LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, | |
# normalize=False) | |
#reg.coef_ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment