Created
March 5, 2021 00:31
-
-
Save MInner/ff536d865404d878708822f0c3b922f9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import glob | |
import tqdm | |
import imageio | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import tensorflow as tf | |
# USAGE: python detect_pose_folder.py '*.png' /tmp/test_poses.txt | |
tfl_url = 'https://storage.googleapis.com/download.tensorflow.org/models/tflite/posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite' | |
def run_posenet(*inputs): | |
tfl_path = tf.keras.utils.get_file('model.tflite', tfl_url, cache_dir='/tmp/') | |
model = tf.lite.Interpreter(model_path=tfl_path) | |
model.allocate_tensors() | |
input_details = model.get_input_details() | |
output_details = model.get_output_details() | |
assert len(input_details) == len(inputs) | |
for input, det in zip(inputs, input_details): | |
model.set_tensor(det['index'], input) | |
model.invoke() | |
outputs = {det['name']: model.get_tensor(det['index']) for det in output_details} | |
return outputs | |
def predict_pose(img): | |
assert img.dtype == np.uint8 | |
assert img.ndim == 3 | |
orig_size = img.shape[:2] | |
final_size = np.max(orig_size) | |
xy_borders = [final_size - s for s in orig_size] | |
boxed_img = tf.cast(tf.image.resize_with_pad(img, final_size, final_size), tf.uint8) | |
pose_boxed = predict_pose_square_img(boxed_img) | |
pose_boxed_px = pose_boxed * final_size - np.array(xy_borders)[::-1] / 2 | |
return pose_boxed_px | |
def predict_pose_square_img(img): | |
assert img.dtype == np.uint8 | |
input_size, pred_stride, n_joints = 257, 32, 17 | |
output_size = (input_size - 1) // pred_stride + 1 | |
img_re = tf.image.resize(img, (input_size, input_size))[..., :3] | |
img_re_11 = tf.cast(img_re, 'float32') / 128 - 1 | |
outputs = run_posenet(img_re_11[None]) | |
heatmap = outputs['MobilenetV1/heatmap_2/BiasAdd'][0] | |
flat_ht = heatmap.reshape(output_size*output_size, n_joints) | |
atgmax_idx = np.unravel_index(np.argmax(flat_ht, axis=0), (output_size, output_size)) | |
argmax_xy = np.vstack(atgmax_idx)[::-1].T | |
offsets = outputs['MobilenetV1/offset_2/BiasAdd'][0] | |
offests_x = offsets[argmax_xy[:, 1], argmax_xy[:, 0], np.arange(n_joints)] | |
offests_y = offsets[argmax_xy[:, 1], argmax_xy[:, 0], n_joints + np.arange(n_joints)] | |
offests_xy = np.vstack([offests_x, offests_y])[::-1].T | |
positions = offests_xy + argmax_xy * pred_stride | |
positions_01 = positions / input_size | |
return positions_01 | |
if __name__ == '__main__': | |
_, img_folder, out_fn = sys.argv | |
with open(out_fn, 'w') as f: | |
for img_path in tqdm.tqdm(glob.glob(img_folder)): | |
img = imageio.imread(img_path) | |
pose = predict_pose(img) | |
short_idx = [0] + list(range(5, 17)) | |
short_pose = pose[short_idx] | |
coord_str = ['%d' % x for x in np.ravel(short_pose)] | |
f.write(img_path + ' ' + ' '.join(coord_str) + '\n') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment