Created
June 4, 2022 18:17
-
-
Save MJacobs1985/96d04c2cc330feeb985c3f933bca507f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#### MTCARS #### | |
rm(list = ls()) | |
library(magrittr) | |
library(dplyr) | |
library(forcats) | |
library(modelr) | |
library(ggdist) | |
library(tidybayes) | |
library(ggplot2) | |
library(cowplot) | |
library(emmeans) | |
library(broom) | |
library(rstan) | |
library(rstanarm) | |
library(brms) | |
library(bayesplot) | |
library(MCMCglmm) | |
library(RColorBrewer) | |
library(ggpubr) | |
library(rstatix) | |
library(grid) | |
library(gridExtra) | |
require(bayesrules) | |
library(gganimate) | |
library(ggstatsplot) | |
theme_set(theme_tidybayes() + panel_border()) | |
data(mtcars) | |
dim | |
skimr::skim(mtcars) | |
mtcars$cyl_fc<-as.factor(mtcars$cyl) | |
ggplot(mtcars, aes(x=hp, | |
y=mpg, | |
col=cyl_fc))+ | |
geom_point(size=4)+ | |
labs(col="cyl")+ | |
theme_bw() | |
ggscatterstats( | |
data = mtcars, | |
x = hp, | |
y = mpg, | |
xlab = "Horsepower", | |
ylab = "Miles per gallon (MPG)", | |
title = "Relationship between miles per gallon and the amount of horsepower of a car") | |
mtcars$cyl_fac<-as.factor(mtcars$cyl) | |
grouped_ggscatterstats( | |
data = mtcars, | |
x = hp, | |
y = mpg, | |
grouping.var = cyl_fac, | |
xlab = "Horsepower", | |
ylab = "Miles per gallon (MPG)", | |
ggtheme = ggplot2::theme_grey(), | |
plotgrid.args = list(nrow = 1), | |
annotation.args = list(title = "Relationship between miles per gallon and the amount of horsepower of a car across number of cylinders")) | |
ggcorrmat( | |
data = mtcars, | |
title = "Correlalogram for mtcars dataset") | |
grouped_ggcorrmat( | |
data = mtcars, | |
type = "robust", | |
grouping.var = cyl_fac, | |
matrix.type = "lower") | |
get_prior(mpg~hp*cyl, data=mtcars) | |
m_brm = brm( | |
mpg ~ hp * cyl, | |
data = mtcars) | |
summary(m_brm) | |
plot(m_brm) | |
get_variables(m_brm) | |
ndraws = 4000 | |
m_brm %>% | |
recover_types(mtcars)%>% | |
spread_draws(b_hp, b_cyl)%>% | |
ggplot(., aes(x=b_hp, fill=as.factor(.chain)))+ | |
geom_density(alpha=0.5)+ | |
labs(fill="Chain")+ | |
theme_bw() | |
m_brm %>% | |
recover_types(mtcars)%>% | |
spread_draws(b_hp, b_cyl)%>% | |
ggplot(., aes(x=b_hp, | |
y=b_cyl, | |
color=as.factor(.chain)))+ | |
geom_point(alpha=0.7)+ | |
labs(color="Chain")+ | |
theme_bw() | |
m_brm %>% | |
recover_types(mtcars)%>% | |
spread_draws(b_hp, b_Intercept)%>% | |
ggplot(., aes(x=b_hp, | |
y=b_Intercept, | |
color=as.factor(.chain)))+ | |
geom_point(alpha=0.7)+ | |
labs(color="Chain")+ | |
theme_bw() | |
m_brm %>% | |
recover_types(mtcars)%>% | |
spread_draws(b_hp, sigma)%>% | |
ggplot(., aes(x=b_hp, | |
y=sigma, | |
color=as.factor(.chain)))+ | |
geom_point(alpha=0.7)+ | |
labs(color="Chain")+ | |
theme_bw() | |
summary(mtcars$mpg) | |
get_prior(mpg~hp*cyl, data=mtcars) | |
m_brm = brm( | |
mpg ~ hp * cyl, | |
data = mtcars, | |
prior = c(prior(normal(15, 4), class = Intercept), | |
prior(normal(3, 0.5), class = b, coef=cyl), | |
prior(normal(2, 0.2), class = b, coef=hp), | |
prior(normal(1.7, 0.6), class = b, coef=hp:cyl), | |
prior(gamma(4, 1), class = sigma)), | |
chains=4, | |
cores=6) | |
m_brm$prior | |
summary(m_brm) | |
plot(m_brm) | |
pp_check(m_brm, ndraws=100) | |
ndraws = 50 | |
p = mtcars %>% | |
group_by(cyl) %>% | |
data_grid(hp = seq_range(hp, n = 101)) %>% | |
add_epred_draws(m_brm, ndraws = ndraws) %>% | |
ggplot(aes(x = hp, y = mpg, color = ordered(cyl))) + | |
geom_line(aes(y = .epred, group = paste(cyl, .draw))) + | |
geom_point(data = mtcars) + | |
scale_color_brewer(palette = "Dark2") + | |
transition_states(.draw, 0, 1) + | |
shadow_mark(future = TRUE, color = "gray50", alpha = 1/20) | |
animate(p, nframes = ndraws, fps = 2.5, | |
width = 800, height = 500, res = 150, dev = "png", type = "cairo") | |
getwd() | |
anim_save("mtcars.gif") | |
mtcars %>% | |
group_by(cyl) %>% | |
data_grid(hp = seq_range(hp, n = 101)) %>% | |
add_predicted_draws(m_brm) %>% | |
ggplot(aes(x = hp, y = mpg, color = ordered(cyl), fill = ordered(cyl))) + | |
stat_lineribbon(aes(y = .prediction), .width = c(.95, .80, .50), alpha = 1/4) + | |
geom_point(data = mtcars) + | |
scale_fill_brewer(palette = "Set2") + | |
scale_color_brewer(palette = "Dark2") | |
mtcars %>% | |
group_by(cyl) %>% | |
data_grid(hp = seq_range(hp, n = 101)) %>% | |
add_predicted_draws(m_brm) %>% | |
ggplot(aes(x = hp, y = mpg)) + | |
stat_lineribbon(aes(y = .prediction), .width = c(.99, .95, .8, .5), color = brewer.pal(5, "Blues")[[5]]) + | |
geom_point(data = mtcars) + | |
scale_fill_brewer() + | |
facet_grid(. ~ cyl, space = "free_x", scales = "free_x") | |
mtcars_clean = mtcars %>% | |
mutate(cyl = ordered(cyl)) | |
head(mtcars_clean) | |
get_prior(cyl ~ mpg, | |
data = mtcars_clean, | |
family = cumulative) | |
summary(mtcars$cyl) | |
m_cyl = brm( | |
cyl ~ mpg, | |
data = mtcars_clean, | |
family = cumulative, | |
seed = 58393, | |
prior=c(prior(normal(1, 0.5), class = Intercept, coef=1), | |
prior(normal(-1,0.5), class = Intercept, coef=2), | |
prior(normal(1.7, 0.6), class = b, coef=mpg)), | |
chains=4, | |
cores=6) | |
plot(m_cyl) | |
summary(m_cyl) | |
pp_check(m_cyl, ndraws=100) | |
tibble(mpg = 21) %>% | |
add_epred_draws(m_cyl) %>% | |
median_qi(.epred) | |
data_plot = mtcars_clean %>% | |
ggplot(aes(x = mpg, y = cyl, color = cyl)) + | |
geom_point() + | |
scale_color_brewer(palette = "Dark2", name = "cyl") | |
fit_plot = mtcars_clean %>% | |
data_grid(mpg = seq_range(mpg, n = 101)) %>% | |
add_epred_draws(m_cyl, value = "P(cyl | mpg)", category = "cyl") %>% | |
ggplot(aes(x = mpg, y = `P(cyl | mpg)`, color = cyl)) + | |
stat_lineribbon(aes(fill = cyl), alpha = 1/5) + | |
scale_color_brewer(palette = "Dark2") + | |
scale_fill_brewer(palette = "Dark2") | |
plot_grid(ncol = 1, align = "v", | |
data_plot, | |
fit_plot) | |
ndraws = 100 | |
p = mtcars_clean %>% | |
data_grid(mpg = seq_range(mpg, n = 101)) %>% | |
add_epred_draws(m_cyl, value = "P(cyl | mpg)", category = "cyl") %>% | |
ggplot(aes(x = mpg, y = `P(cyl | mpg)`, color = cyl)) + | |
# we remove the `.draw` column from the data for stat_lineribbon so that the same ribbons | |
# are drawn on every frame (since we use .draw to determine the transitions below) | |
stat_lineribbon(aes(fill = cyl), alpha = 1/5, color = NA, data = . %>% select(-.draw)) + | |
# we use sample_draws to subsample at the level of geom_line (rather than for the full dataset | |
# as in previous HOPs examples) because we need the full set of draws for stat_lineribbon above | |
geom_line(aes(group = paste(.draw, cyl)), size = 1, data = . %>% sample_draws(ndraws)) + | |
scale_color_brewer(palette = "Dark2") + | |
scale_fill_brewer(palette = "Dark2") + | |
transition_manual(.draw) | |
animate(p, nframes = ndraws, fps = 2.5, | |
width = 800, height = 500, res = 150, dev = "png", type = "cairo") | |
getwd() | |
anim_save("mtcars2.gif") | |
tibble(mpg = 20) %>% | |
add_epred_draws(m_cyl, value = "P(cyl | mpg = 20)", category = "cyl") %>% | |
ungroup() %>% | |
select(.draw, cyl, `P(cyl | mpg = 20)`) %>% | |
gather_pairs(cyl, `P(cyl | mpg = 20)`, triangle = "both") %>% | |
filter(.row != .col) %>% | |
ggplot(aes(.x, .y)) + | |
geom_point(alpha = 1/50) + | |
facet_grid(.row ~ .col) + | |
ylab("P(cyl = row | mpg = 20)") + | |
xlab("P(cyl = col | mpg = 20)") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment