Created
March 9, 2019 15:03
-
-
Save MLWhiz/1ac0841f0333a97396d300b8f4c247c9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Attention(nn.Module): | |
def __init__(self, feature_dim, step_dim, bias=True, **kwargs): | |
super(Attention, self).__init__(**kwargs) | |
self.supports_masking = True | |
self.bias = bias | |
self.feature_dim = feature_dim | |
self.step_dim = step_dim | |
self.features_dim = 0 | |
weight = torch.zeros(feature_dim, 1) | |
nn.init.kaiming_uniform_(weight) | |
self.weight = nn.Parameter(weight) | |
if bias: | |
self.b = nn.Parameter(torch.zeros(step_dim)) | |
def forward(self, x, mask=None): | |
feature_dim = self.feature_dim | |
step_dim = self.step_dim | |
eij = torch.mm( | |
x.contiguous().view(-1, feature_dim), | |
self.weight | |
).view(-1, step_dim) | |
if self.bias: | |
eij = eij + self.b | |
eij = torch.tanh(eij) | |
a = torch.exp(eij) | |
if mask is not None: | |
a = a * mask | |
a = a / (torch.sum(a, 1, keepdim=True) + 1e-10) | |
weighted_input = x * torch.unsqueeze(a, -1) | |
return torch.sum(weighted_input, 1) | |
class Attention_Net(nn.Module): | |
def __init__(self): | |
super(Attention_Net, self).__init__() | |
drp = 0.1 | |
self.embedding = nn.Embedding(max_features, embed_size) | |
self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32)) | |
self.embedding.weight.requires_grad = False | |
self.embedding_dropout = nn.Dropout2d(0.1) | |
self.lstm = nn.LSTM(embed_size, 128, bidirectional=True, batch_first=True) | |
self.lstm2 = nn.GRU(128*2, 64, bidirectional=True, batch_first=True) | |
self.attention_layer = Attention(128, maxlen) | |
self.linear = nn.Linear(64*2 , 64) | |
self.relu = nn.ReLU() | |
self.out = nn.Linear(64, 1) | |
def forward(self, x): | |
h_embedding = self.embedding(x) | |
h_embedding = torch.squeeze(torch.unsqueeze(h_embedding, 0)) | |
h_lstm, _ = self.lstm(h_embedding) | |
h_lstm, _ = self.lstm2(h_lstm) | |
h_lstm_atten = self.attention_layer(h_lstm) | |
conc = self.relu(self.linear(h_lstm_atten)) | |
out = self.out(conc) | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment