Created
January 7, 2019 07:16
-
-
Save MLWhiz/234a409138e6389f6b9eafe3438ca07a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def pytorch_model_run_cv(x_train,y_train,features,x_test, model_obj, feats = False,clip = True): | |
seed_everything() | |
avg_losses_f = [] | |
avg_val_losses_f = [] | |
# matrix for the out-of-fold predictions | |
train_preds = np.zeros((len(x_train))) | |
# matrix for the predictions on the test set | |
test_preds = np.zeros((len(x_test))) | |
splits = list(StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=SEED).split(x_train, y_train)) | |
for i, (train_idx, valid_idx) in enumerate(splits): | |
seed_everything(i*1000+i) | |
x_train = np.array(x_train) | |
y_train = np.array(y_train) | |
if feats: | |
features = np.array(features) | |
x_train_fold = torch.tensor(x_train[train_idx.astype(int)], dtype=torch.long).cuda() | |
y_train_fold = torch.tensor(y_train[train_idx.astype(int), np.newaxis], dtype=torch.float32).cuda() | |
if feats: | |
kfold_X_features = features[train_idx.astype(int)] | |
kfold_X_valid_features = features[valid_idx.astype(int)] | |
x_val_fold = torch.tensor(x_train[valid_idx.astype(int)], dtype=torch.long).cuda() | |
y_val_fold = torch.tensor(y_train[valid_idx.astype(int), np.newaxis], dtype=torch.float32).cuda() | |
model = copy.deepcopy(model_obj) | |
model.cuda() | |
loss_fn = torch.nn.BCEWithLogitsLoss(reduction='sum') | |
step_size = 300 | |
base_lr, max_lr = 0.001, 0.003 | |
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), | |
lr=max_lr) | |
################################################################################################ | |
scheduler = CyclicLR(optimizer, base_lr=base_lr, max_lr=max_lr, | |
step_size=step_size, mode='exp_range', | |
gamma=0.99994) | |
############################################################################################### | |
train = MyDataset(torch.utils.data.TensorDataset(x_train_fold, y_train_fold)) | |
valid = MyDataset(torch.utils.data.TensorDataset(x_val_fold, y_val_fold)) | |
train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True) | |
valid_loader = torch.utils.data.DataLoader(valid, batch_size=batch_size, shuffle=False) | |
print(f'Fold {i + 1}') | |
for epoch in range(n_epochs): | |
start_time = time.time() | |
model.train() | |
avg_loss = 0. | |
for i, (x_batch, y_batch, index) in enumerate(train_loader): | |
if feats: | |
f = kfold_X_features[index] | |
y_pred = model([x_batch,f]) | |
else: | |
y_pred = model(x_batch) | |
if scheduler: | |
scheduler.batch_step() | |
# Compute and print loss. | |
loss = loss_fn(y_pred, y_batch) | |
optimizer.zero_grad() | |
loss.backward() | |
if clip: | |
nn.utils.clip_grad_norm_(model.parameters(),1) | |
optimizer.step() | |
avg_loss += loss.item() / len(train_loader) | |
model.eval() | |
valid_preds_fold = np.zeros((x_val_fold.size(0))) | |
test_preds_fold = np.zeros((len(x_test))) | |
avg_val_loss = 0. | |
for i, (x_batch, y_batch,index) in enumerate(valid_loader): | |
if feats: | |
f = kfold_X_valid_features[index] | |
y_pred = model([x_batch,f]).detach() | |
else: | |
y_pred = model(x_batch).detach() | |
avg_val_loss += loss_fn(y_pred, y_batch).item() / len(valid_loader) | |
valid_preds_fold[index] = sigmoid(y_pred.cpu().numpy())[:, 0] | |
elapsed_time = time.time() - start_time | |
print('Epoch {}/{} \t loss={:.4f} \t val_loss={:.4f} \t time={:.2f}s'.format( | |
epoch + 1, n_epochs, avg_loss, avg_val_loss, elapsed_time)) | |
avg_losses_f.append(avg_loss) | |
avg_val_losses_f.append(avg_val_loss) | |
# predict all samples in the test set batch per batch | |
for i, (x_batch,) in enumerate(test_loader): | |
if feats: | |
f = test_features[i * batch_size:(i+1) * batch_size] | |
y_pred = model([x_batch,f]).detach() | |
else: | |
y_pred = model(x_batch).detach() | |
test_preds_fold[i * batch_size:(i+1) * batch_size] = sigmoid(y_pred.cpu().numpy())[:, 0] | |
train_preds[valid_idx] = valid_preds_fold | |
test_preds += test_preds_fold / len(splits) | |
print('All \t loss={:.4f} \t val_loss={:.4f} \t '.format(np.average(avg_losses_f),np.average(avg_val_losses_f))) | |
return train_preds, test_preds |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment