Last active
November 8, 2020 05:56
-
-
Save MLWhiz/6a847569f0b61ccf75369319bcf0d40f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from fastapi import FastAPI | |
from pydantic import BaseModel | |
import torchvision | |
from torchvision import transforms | |
import torch | |
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import io, json | |
import base64 | |
app = FastAPI() | |
# load a pre-trained Model and convert it to eval mode. | |
# This model loads just once when we start the API. | |
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) | |
COCO_INSTANCE_CATEGORY_NAMES = [ | |
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', | |
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', | |
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', | |
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', | |
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', | |
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', | |
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', | |
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', | |
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', | |
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', | |
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' | |
] | |
model.eval() | |
# define the Input class | |
class Input(BaseModel): | |
base64str : str | |
threshold : float | |
def base64str_to_PILImage(base64str): | |
base64_img_bytes = base64str.encode('utf-8') | |
base64bytes = base64.b64decode(base64_img_bytes) | |
bytesObj = io.BytesIO(base64bytes) | |
img = Image.open(bytesObj) | |
return img | |
@app.put("/predict") | |
def get_predictionbase64(d:Input): | |
''' | |
FastAPI API will take a base 64 image as input and return a json object | |
''' | |
# Load the image | |
img = base64str_to_PILImage(d.base64str) | |
# Convert image to tensor | |
transform = transforms.Compose([transforms.ToTensor()]) | |
img = transform(img) | |
# get prediction on image | |
pred = model([img]) | |
pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())] | |
pred_boxes = [[(float(i[0]), float(i[1])), (float(i[2]), float(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())] | |
pred_score = list(pred[0]['scores'].detach().numpy()) | |
pred_t = [pred_score.index(x) for x in pred_score if x > d.threshold][-1] | |
pred_boxes = pred_boxes[:pred_t+1] | |
pred_class = pred_class[:pred_t+1] | |
return {'boxes': pred_boxes, | |
'classes' : pred_class} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment