Created
July 3, 2019 16:17
-
-
Save MLWhiz/7024145f411bfa13b8d8fa66f977a259 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Create a RDD from RatingRDD that only contains the two columns of interest i.e. movie_id,rating. | |
RDD_movid_rating = ratingRDD.map(lambda x : (x.split("\t")[1],x.split("\t")[2])) | |
print("RDD_movid_rating:",RDD_movid_rating.take(4)) | |
# Create a RDD from MovieRDD that only contains the two columns of interest i.e. movie_id,title. | |
RDD_movid_title = movieRDD.map(lambda x : (x.split("|")[0],x.split("|")[1])) | |
print("RDD_movid_title:",RDD_movid_title.take(2)) | |
# merge these two pair RDDs based on movie_id. For this we will use the transformation leftOuterJoin(). See the transformation document. | |
rdd_movid_title_rating = RDD_movid_rating.leftOuterJoin(RDD_movid_title) | |
print("rdd_movid_title_rating:",rdd_movid_title_rating.take(1)) | |
# use the RDD in previous step to create (movie,1) tuple pair RDD | |
rdd_title_rating = rdd_movid_title_rating.map(lambda x: (x[1][1],1 )) | |
print("rdd_title_rating:",rdd_title_rating.take(2)) | |
# Use the reduceByKey transformation to reduce on the basis of movie_title | |
rdd_title_ratingcnt = rdd_title_rating.reduceByKey(lambda x,y: x+y) | |
print("rdd_title_ratingcnt:",rdd_title_ratingcnt.take(2)) | |
# Get the final answer by using takeOrdered Transformation | |
print "#####################################" | |
print "25 most rated movies:",rdd_title_ratingcnt.takeOrdered(25,lambda x:-x[1]) | |
print "#####################################" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment