Created
February 9, 2019 08:07
-
-
Save MLWhiz/f1e0baf3e2bcfb7a6c40c812079ff109 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# load the GloVe vectors in a dictionary: | |
def load_glove_index(): | |
EMBEDDING_FILE = '../input/embeddings/glove.840B.300d/glove.840B.300d.txt' | |
def get_coefs(word,*arr): return word, np.asarray(arr, dtype='float32')[:300] | |
embeddings_index = dict(get_coefs(*o.split(" ")) for o in open(EMBEDDING_FILE)) | |
return embeddings_index | |
embeddings_index = load_glove_index() | |
print('Found %s word vectors.' % len(embeddings_index)) | |
from nltk.corpus import stopwords | |
stop_words = stopwords.words('english') | |
def sent2vec(s): | |
words = str(s).lower() | |
words = word_tokenize(words) | |
words = [w for w in words if not w in stop_words] | |
words = [w for w in words if w.isalpha()] | |
M = [] | |
for w in words: | |
try: | |
M.append(embeddings_index[w]) | |
except: | |
continue | |
M = np.array(M) | |
v = M.sum(axis=0) | |
if type(v) != np.ndarray: | |
return np.zeros(300) | |
return v / np.sqrt((v ** 2).sum()) | |
# create glove features | |
xtrain_glove = np.array([sent2vec(x) for x in tqdm(train_df.cleaned_text.values)]) | |
xtest_glove = np.array([sent2vec(x) for x in tqdm(test_df.cleaned_text.values)]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment