Created
June 15, 2019 04:14
-
-
Save MLWhiz/fc08cf3e3312e2f38581321c88c68492 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def get_disc_normal(image_shape=(64,64,3)): | |
| dropout_prob = 0.4 | |
| kernel_init = 'glorot_uniform' | |
| dis_input = Input(shape = image_shape) | |
| # Conv layer 1: | |
| discriminator = Conv2D(filters = 64, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(dis_input) | |
| discriminator = LeakyReLU(0.2)(discriminator) | |
| # Conv layer 2: | |
| discriminator = Conv2D(filters = 128, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(discriminator) | |
| discriminator = BatchNormalization(momentum = 0.5)(discriminator) | |
| discriminator = LeakyReLU(0.2)(discriminator) | |
| # Conv layer 3: | |
| discriminator = Conv2D(filters = 256, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(discriminator) | |
| discriminator = BatchNormalization(momentum = 0.5)(discriminator) | |
| discriminator = LeakyReLU(0.2)(discriminator) | |
| # Conv layer 4: | |
| discriminator = Conv2D(filters = 512, kernel_size = (4,4), strides = (2,2), padding = "same", data_format = "channels_last", kernel_initializer = kernel_init)(discriminator) | |
| discriminator = BatchNormalization(momentum = 0.5)(discriminator) | |
| discriminator = LeakyReLU(0.2)(discriminator)#discriminator = MaxPooling2D(pool_size=(2, 2))(discriminator) | |
| # Flatten | |
| discriminator = Flatten()(discriminator) | |
| # Dense Layer | |
| discriminator = Dense(1)(discriminator) | |
| # Sigmoid Activation | |
| discriminator = Activation('sigmoid')(discriminator) | |
| # Optimizer and Compiling model | |
| dis_opt = Adam(lr=0.0002, beta_1=0.5) | |
| discriminator_model = Model(input = dis_input, output = discriminator) | |
| discriminator_model.compile(loss='binary_crossentropy', optimizer=dis_opt, metrics=['accuracy']) | |
| discriminator_model.summary() | |
| return discriminator_model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment