Last active
July 6, 2023 23:04
-
-
Save MMesch/35d7833a3daa4a9e8ca9c6953cbe21d4 to your computer and use it in GitHub Desktop.
Robust Spline Regression with Scikit-Learn
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
Robust B-Spline regression with scikit-learn | |
""" | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import scipy.interpolate as si | |
from sklearn.base import TransformerMixin | |
from sklearn.pipeline import make_pipeline | |
from sklearn.linear_model import LinearRegression, RANSACRegressor,\ | |
TheilSenRegressor, HuberRegressor | |
from sklearn.metrics import mean_squared_error | |
class BSplineFeatures(TransformerMixin): | |
def __init__(self, knots, degree=3, periodic=False): | |
self.bsplines = get_bspline_basis(knots, degree, periodic=periodic) | |
self.nsplines = len(self.bsplines) | |
def fit(self, X, y=None): | |
return self | |
def transform(self, X): | |
nsamples, nfeatures = X.shape | |
features = np.zeros((nsamples, nfeatures * self.nsplines)) | |
for ispline, spline in enumerate(self.bsplines): | |
istart = ispline * nfeatures | |
iend = (ispline + 1) * nfeatures | |
features[:, istart:iend] = si.splev(X, spline) | |
return features | |
def main(): | |
np.random.seed(42) | |
X = np.random.uniform(low=-30, high=30, size=400) | |
x_predict = np.linspace(-25, 25, 1000) | |
y = np.sin(2 * np.pi * 0.1 * X) | |
X_test = np.random.uniform(low=-30, high=30, size=200) | |
y_test = np.sin(2 * np.pi * 0.1 * X_test) | |
y_errors_large = y.copy() | |
y_errors_large[::10] = 6 | |
# Make sure that X is 2D | |
X = X[:, np.newaxis] | |
X_test = X_test[:, np.newaxis] | |
# predict y | |
knots = np.linspace(-30, 30, 20) | |
bspline_features = BSplineFeatures(knots, degree=3, periodic=False) | |
estimators = [('Least-Square', '-', 'C0', | |
LinearRegression(fit_intercept=False)), | |
('Theil-Sen', '>', 'C1', TheilSenRegressor(random_state=42)), | |
('RANSAC', '<', 'C2', RANSACRegressor(random_state=42)), | |
('HuberRegressor', '--', 'C3', HuberRegressor())] | |
fig, ax = plt.subplots(1, 1, figsize=(8, 3)) | |
fig.suptitle('Robust B-Spline Regression with SKLearn') | |
ax.plot(X[:, 0], y_errors_large, 'o', ms=5, c='black', | |
label='data points [10% outliers]') | |
for label, style, color, estimator in estimators: | |
model = make_pipeline(bspline_features, estimator) | |
model.fit(X, y_errors_large) | |
mse = mean_squared_error(model.predict(X_test), y_test) | |
y_predicted = model.predict(x_predict[:, None]) | |
ax.plot(x_predict, y_predicted, style, lw=2, markevery=8, ms=6, | |
color=color, label=label + ' E={:2.2g}'.format(mse)) | |
ax.legend(loc='upper right', framealpha=0.95) | |
ax.set(ylim=(-2, 8), xlabel='time [s]', ylabel='amplitude') | |
plt.show() | |
def get_bspline_basis(knots, degree=3, periodic=False): | |
"""Get spline coefficients for each basis spline.""" | |
nknots = len(knots) | |
y_dummy = np.zeros(nknots) | |
knots, coeffs, degree = si.splrep(knots, y_dummy, k=degree, | |
per=periodic) | |
ncoeffs = len(coeffs) | |
bsplines = [] | |
for ispline in range(nknots): | |
coeffs = [1.0 if ispl == ispline else 0.0 for ispl in range(ncoeffs)] | |
bsplines.append((knots, coeffs, degree)) | |
return bsplines | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment