Skip to content

Instantly share code, notes, and snippets.

@Mahedi-61
Last active April 10, 2024 03:34
Show Gist options
  • Save Mahedi-61/e0625c8782426168e436fb98417ef209 to your computer and use it in GitHub Desktop.
Save Mahedi-61/e0625c8782426168e436fb98417ef209 to your computer and use it in GitHub Desktop.
Step by step instructions for installing CUDA Toolkit 10.0 CentOS 7 Server machine for running Deep Learning projects
#!/bin/bash
## This gist contains step by step instructions to install cuda v10.1 and cudnn 7.6 in CentOS 7
### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###
### to verify your gpu is cuda enable check
lspci | grep -i nvidia
### gcc compiler is required for development using the cuda toolkit. to verify the version of gcc install enter
gcc --version
# First download the latest Nvidia CUDA from official repository
wget https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-repo-rhel7-10.0.130-1.x86_64.rpm
# install the packages
sudo rpm -i cuda-repo-rhel7-10.0.130-1.x86_64.rpm
# install cuda
sudo yum install cuda
# setup your paths
echo 'export PATH=/usr/local/cuda-10.0/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
sudo ldconfig
# install cuDNN v7.5
# in order to download cuDNN you have to be regeistered here https://developer.nvidia.com/developer-program/signup
# then download cuDNN v7.5 form https://developer.nvidia.com/cudnn
CUDNN_TAR_FILE="cudnn-10.0-linux-x64-v7.5.0.56"
wget https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v7.5.0.56/prod/10.0_20190219/cudnn-10.0-linux-x64-v7.5.0.56.tgz
tar -xzvf ${CUDNN_TAR_FILE}
# copy the following files into the cuda toolkit directory.
sudo cp -P cuda/include/cudnn.h /usr/local/cuda-10.0/include
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64/
sudo chmod a+r /usr/local/cuda-10.0/lib64/libcudnn*
# Finally, to verify the installation, check
nvidia-smi
nvcc -V
# install Tensorflow (an open source machine learning framework)
# I choose version 1.13.1 because it is stable and compatible with CUDA 10.0 Toolkit and cuDNN 7.5
sudo pip3 install --user tensorflow-gpu==1.13.1
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment