Last active
January 3, 2016 12:49
-
-
Save Maksims/8464888 to your computer and use it in GitHub Desktop.
"rude" extension to Float32Array, implementing 2D Vector Math.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// degree to radians constant | |
var rd = Math.PI / 180.0; | |
// 2d vector [x, y] library | |
var Vec2 = { | |
cacheSize: 64, | |
cache: [ ], | |
clear: function() { | |
this.cache = [ ]; | |
}, | |
new: function(x, y) { | |
if (this.cache.length) { | |
return this.cache.pop().setXY(x, y); | |
} else { | |
return new Float32Array([ x || 0, y || 0 ]); | |
} | |
}, | |
alpha: null, | |
charlie: null, | |
bet: null | |
}; | |
Vec2.alpha = Vec2.new(); | |
Vec2.charlie = Vec2.new(); | |
Vec2.beta = Vec2.new(); | |
// push vector into cache stack for reusability | |
Float32Array.prototype.delete = function() { | |
if (Vec2.cache.length >= Vec2.cacheSize) return; | |
Vec2.cache.push(this); | |
}; | |
// clone | |
Float32Array.prototype.clone = function() { | |
return Vec2.new(this[0], this[1]); | |
}; | |
// compare for equal | |
Float32Array.prototype.equal = function(v) { | |
return this[0] == v[0] && this[1] == v[1]; | |
}; | |
Float32Array.prototype.equalS = function(s) { | |
return this[0] == s && this[1] == s; | |
}; | |
Float32Array.prototype.equalXY = function(x, y) { | |
return this[0] == x && this[1] == y; | |
}; | |
// clear | |
Float32Array.prototype.set = function(v) { | |
this[0] = v && v[0] || 0; | |
this[1] = v && v[1] || 0; | |
return this; | |
}; | |
Float32Array.prototype.setS = function(s) { | |
this[0] = s || 0; | |
this[1] = s || 0; | |
return this; | |
}; | |
Float32Array.prototype.setR = function(r) { | |
this[0] = Math.cos(r); | |
this[1] = Math.sin(r); | |
return this; | |
}; | |
Float32Array.prototype.setXY = function(x, y) { | |
this[0] = x || 0; | |
this[1] = y || 0; | |
return this; | |
}; | |
// add | |
Float32Array.prototype.add = function(v) { | |
this[0] += v[0]; | |
this[1] += v[1]; | |
return this; | |
}; | |
Float32Array.prototype.addS = function(s) { | |
this[0] += s; | |
this[1] += s; | |
return this; | |
}; | |
Float32Array.prototype.addXY = function(x, y) { | |
this[0] += x; | |
this[1] += y; | |
return this; | |
}; | |
// linear interpolation | |
Float32Array.prototype.lerp = function(v, f) { | |
this[0] += f * (v[0] - this[0]); | |
this[1] += f * (v[1] - this[1]); | |
return this; | |
}; | |
Float32Array.prototype.lerpS = function(s, f) { | |
this[0] += f * (s - this[0]); | |
this[1] += f * (s - this[1]); | |
return this; | |
}; | |
Float32Array.prototype.lerpXY = function(x, y, f) { | |
this[0] += f * (x - this[0]); | |
this[1] += f * (y - this[1]); | |
return this; | |
}; | |
// subtract | |
Float32Array.prototype.sub = function(v) { | |
this[0] -= v[0]; | |
this[1] -= v[1]; | |
return this; | |
}; | |
Float32Array.prototype.subS = function(s) { | |
this[0] -= s; | |
this[1] -= s; | |
return this; | |
}; | |
Float32Array.prototype.subXY = function(x, y) { | |
this[0] -= x; | |
this[1] -= y; | |
return this; | |
}; | |
// multiply | |
Float32Array.prototype.mul = function(v) { | |
this[0] *= v[0]; | |
this[1] *= v[1]; | |
return this; | |
}; | |
Float32Array.prototype.mulS = function(s) { | |
this[0] *= s; | |
this[1] *= s; | |
return this; | |
}; | |
Float32Array.prototype.mulXY = function(x, y) { | |
this[0] *= x; | |
this[1] *= y; | |
return this; | |
}; | |
// divide | |
Float32Array.prototype.div = function(v) { | |
this[0] /= v[0]; | |
this[1] /= v[1]; | |
return this; | |
}; | |
Float32Array.prototype.divS = function(s) { | |
this[0] /= s; | |
this[1] /= s; | |
return this; | |
}; | |
Float32Array.prototype.divXY = function(x, y) { | |
this[0] /= x; | |
this[1] /= y; | |
return this; | |
}; | |
// length | |
Float32Array.prototype.len = function() { | |
return Math.sqrt((this[0] * this[0]) + (this[1] * this[1])); | |
}; | |
// distance | |
Float32Array.prototype.dist = function(v) { | |
var x = this[0] - v[0]; | |
var y = this[1] - v[1]; | |
return Math.sqrt(x * x + y * y); | |
}; | |
Float32Array.prototype.distXY = function(x, y) { | |
return Math.sqrt(this[0] * x + this[1] * y); | |
}; | |
// dot | |
Float32Array.prototype.dot = function(v) { | |
return this[0] * v[0] + this[1] * v[1]; | |
}; | |
Float32Array.prototype.dotXY = function(x, y) { | |
return this[0] * x + this[1] * y; | |
}; | |
// normal | |
Float32Array.prototype.norm = function() { | |
var l = 1.0 / Math.sqrt((this[0] * this[0]) + (this[1] * this[1])); | |
this[0] *= l; | |
this[1] *= l; | |
return this; | |
}; | |
// radians | |
Float32Array.prototype.radians = function() { | |
return Math.atan2(this[1], this[0]); | |
}; | |
// rotate | |
Float32Array.prototype.rot = function(v) { | |
Vec2.charlie.set(v).norm(); | |
var t = this[0] * Vec2.charlie[0] - this[1] * Vec2.charlie[1]; | |
this[1] = this[1] * Vec2.charlie[0] + this[0] * Vec2.charlie[1]; | |
this[0] = t; | |
return this; | |
}; | |
Float32Array.prototype.rotR = function(r) { | |
return this.rot(Vec2.charlie.setR(r)); | |
}; | |
Float32Array.prototype.rotXY = function(x, y) { | |
return this.rot(Vec2.charlie.setXY(x, y).norm()); | |
}; | |
// saturate 0.0 .. 1.0 | |
Float32Array.prototype.sat = function() { | |
if (this.len() > 1.0) { | |
this.norm(); | |
} | |
return this; | |
} | |
// floor | |
Float32Array.prototype.floor = function() { | |
this[0] = Math.floor(this[0]); | |
this[1] = Math.floor(this[1]); | |
return this; | |
}; | |
// round | |
Float32Array.prototype.round = function() { | |
this[0] = Math.round(this[0]); | |
this[1] = Math.round(this[1]); | |
return this; | |
}; | |
// ceil | |
Float32Array.prototype.ceil = function() { | |
this[0] = Math.ceil(this[0]); | |
this[1] = Math.ceil(this[1]); | |
return this; | |
}; |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Example of 2D camera maths for pick (using screen coordinates, transform to world space).
Particular camera supports movement, rotation and zooming: